Research to identify the dark energy and dark matter in the universe

Introduction

If you hear someone say: light can reach infinite speed in the universe, you might say this is just a joke, because Einstein said: the speed of light cannot exceed a certain limit (300,000 kilometers per second).

I believe that scientific facts and theories established in the past should not be treated as consistent and correct forever.

- The universe consists of a vacuum in which there are:

1. Primary particles resulting from the Big Bang have different electrical charges and are placed in the form of cosmic tissue.

2. Stars and galaxies that move in this fabric.

Those particles are dark matter, and the electromagnetic fields they generate are dark energy.

- Dark energy is not enormous energy as we think, what makes it enormous is the passage of time for events in the universe.

- There are free stars moving in the cosmic tissue and are affected only by the electromagnetic fields of the fabric and therefore its way in the fabric is normal and undistorted, and is moving at an accelerated speed in the universe, which explains the expansion of the universe (Hubble).

- There are stars associated with each other or with planets in the form of solar systems and galaxies, and each star is affected by dark energy and is also affected by the gravitational forces of stars or planets.

This relationship between the star and other stars creates a distortion in the cosmic fabric and thus changes the movement of stars and here we say the universe is constant and does not expand (Einstein).

- Light can reach infinite speeds in undistorted cosmic tissue.

- The age of the universe more than the age currently known.
Research Title: Identity of Dark Matter and Dark Energy

The objective of the research: **First**, to prove that dark matter in the universe are small particles with different electrical charge, and these particles constitute the raw material in the universe, and resulted from the Big Bang. These particles are the components of an atom (electrons, protons, neutrons, and all the raw particles that produced from the atom in the Big Bang).

Second, prove that dark energy is an electromagnetic field that results from the difference between the electric charges of elementary particles in the universe.

After the Big Bang happened, and after the heat of the universe was decreasing, two things happened about the same time.

First thing: particles with different electrical charges began to position themselves as a three-dimensional grid, which led to sequences of negatively charged and positively charged lines, at the end, they form what looks like a fabric made up of particle lines and electromagnetic fields between them. Let’s call this Cosmic fabric (fabric_A).

These particles form dark matter, and the electromagnetic fields they generate form the dark energy of the universe.

When the space object moves into the cosmic tissue there are:

-A free star that is not associated with any other star or planet, and is only affected by the electromagnetic fields generated in the tissue. Here we say that there is no distortion of the star’s path in tissue A.

-A star linked to other stars or planets (the solar system), and here the star is affected by the electromagnetic fields in tissue A, and also affected by the gravitational force of other stars or planets. The fabric A is deformed.

The second thing: a part of the electrically charged particles and elementary particles interacted with each other and formed atoms for elements that united and formed stars and planets.

research method:

Referring to the double slit experiment, I will study the behavior and movement of the electron from the moment it goes to the moment it reaches the double slit, the electron will be released into a hollow tube, and the inner surface of the tube is a sensitive screen for electrons that give a white flicker or a mark when it comes into contact with the electron, without affecting the electron movement. I suppose that an electron has two types of motion: (1 - side vibratory movement, 2 - forward movement) The lateral vibration movement is much faster than the forward movement.

First, we release one electron into the tube, then we see the sensitive screen (the inner surface of the tube), I think here we will see a lot of bright spots on all the screen,(Because (of the two types of movement that the electron has.
Second, we re-experiment with increasing the diameter of the tube, until we reach the largest diameter of the tube without any bright spots on the sensitive screen. Let us call the tube that has the largest diameter and still shows electron plots on the sensitive screen (tube C). If we assume that the sensitive screen of the electrons is connected to a device that measures the time at each point of contact between the screen and the electron, by the distribution of bright points on the screen in addition to the time recorded for each of these points we can get a clearer idea about the nature of the movement of the electron (spiral, circular, Curved), etc.

Now let's go back to the double slit experience, we will conduct the experiment in several stages:

Stage 1 - The distance between the two slits is less than the diameter of the (tube C). In this case the sensitive screen will show a combination of bright lines and dark lines. This doesn't happen because the electron is split into two electrons, and each electron went through a slit, or the electron went through the two slots at the same time!

The explanation is:

- The electron has a lateral and forward movement, and the lateral movement is much faster than the front motion. This makes him appear as it is located at the right and left slits at the same time, but that is not true. The truth is that he is at one slit first, and then at the other (after a very small fraction of time), the electron crosses from one slit, not both.

- When an electron moves, it generates an electromagnetic field, and the electromagnetic field generated by cosmic (tissue A) affects the motion of the electron, making it travel as we saw it in the (tube C). But in double-slit experiment, (A tissue) deformation occurs due to the presence of the double slit barrier, this leads to deformation of the electromagnetic field of (tissue A), as a result, there is a slowdown of the electron's front and side motion, and the shape of the electron movement changes, where lateral motion will expand, and the electron reaches lateral areas that it did not reach before it crossed the slit.

(the electromagnetic field affect even more the electron with the slowing side motion).

Finally, electron placed on the sensitive screen in the form of bright areas and dark areas, and the bright areas are in fact the part of the cosmic tissue contains positive-charged particles that attract the electron to it, and the black regions are the part of the cosmic tissue with negatively charged particles that goes electron away.

Assume that the length of (C tube) is equal to the distance between the double slit barrier and the sensitive screen, so the time required to connect the electron to the end of the tube is much less than the time required to connect the electron to the sensitive screen in double slit experience. The movement of the electron in the tube C is not constant, but is increasing with increasing distance traveled, as long as there is no deformation of the fabric A, because the movement of the electron accelerates with increasing distance. This acceleration, which is added to the velocity of the electron, results from the electromagnetic field of tissue A, The force generated by the electromagnetic field of tissue A is to the direction of the electron's forward motion, and therefore there is an acceleration in the
electron's forward motion. But when cosmic tissue is deformed, part of the force of the electromagnetic field of fabric A is more toward the lateral motion of the electron than toward the forward motion, this slows the forward electron movement due to the expansion of the lateral motion. Let us have two tubes C1, C2 have the length d1, d2, and d2 = 2 × d1. The time required for an electron to reach the sensitive screen at the end of C2 is not twice ((as high as the time the electron reaches end of C1. It is actually less. (t2 2 × t1)

Now if we assume that the length of (tube C) is (d), let's divide (d) into equal distances (d1, d2, d3, d4, d5)

In the regulated velocity: the electron velocity in the distance d1 is s1 = d1 ÷ t1, and in the distance d2 is s2 = d2 ÷ t2, but this is actually not true. The velocity in distance d1 is the velocity of the electron before entering the tube plus the acceleration that the electron takes from the electromagnetic field in d1, and the velocity in d2 is the new velocity of the electron in d1 plus the acceleration in d2, and the same thing happens to the electron in d3, d4, d5. Let's call the acceleration acquired: symbol (a). (here we neglect the acceleration of gravity because the C tube is horizontal). The initial speed of the electron is denoted by the symbol (S_i), S1=S_i+a1 and S2=S1+a2

The magnitude of the electromagnetic field applied to the electron is constant over time and with increasing distance for all objects, (whether small or large in mass and size). Acceleration (a) is also constant over time and with increasing distance but only for objects of equal mass and size. The acquired acceleration of the moving object is inversely related to body mass (not Direct proportion). The body with a small mass gain more acceleration than the body with a large mass, although the amount of electromagnetic field is same for the two bodies. This drives us to rethink the value of (Galileo's acceleration of gravity)! In fact there is no regular velocity in the universe, Only in space without tissue A, the speed of the objects will be regular and there will be no acceleration

When the body chooses a road in space, it only activates the electromagnetic field of that road in tissue A, whether the road is horizontal or vertical or forms an angle with the horizon line

Now I can say that the speed of light is not constant in space as (Einstein) said, but is increasing to infinity if there is no deformation of the A fabric that is going through it, so the speed of light can reach infinite value. Here we must reconsider the age of the universe and the age of the stars and planets discovered. The velocity of light in space free of tissue A is constant, but it is difficult to get it. (I think it happened in the universe just after the moment of the Big Bang, and a bubble was formed free of the initial particles generated by the Big Bang, and bubble is surrounding the place of the explosion, and this bubble is the center of this universe. bubbles also occur where the end-of-life star explodes in space. We can prove that bubbles exist in the universe by observing two light rays that we already know come from the same star, in two different places on Earth. If one of the light beams reached us before the other, in this case the late beam would pass through the bubble as (there is no deformation of the fabric A light beams). This is very important in order to
correct the estimated error in the age of the universe and the age of the stars. By deducing a number which is the constant acceleration of the light beam within one light year.

I will explain this in detail at the end of the research

Now we ask this question: How does the electromagnetic field generated in tissue A accelerate space objects of large size and mass? The answer is: Large objects in size move in a very wide path in cosmic tissue, and that makes objects exposed to too many electromagnetic fields. Over time, the acceleration of the movement of objects will clearly appear.

When (Hubble) announced that the universe was expanding, it must have detected a free star that is not bound to any other star, and no planets orbit it. This star does not have a deformation of the A tissue that crosses it.

So the universe is constant and does not expand for space objects that have a tissue A deformation. These objects are connected to other objects orbiting them (our solar system, galaxies) (Einstein). And the universe is expanding for free space objects, (Hubble).

Stage 2 - The distance between the two slits is more than the diameter of the (tube C). In this case, we'll see only one bright area on the sensitive screen because the electron path has no A tissue deformation.

Stage 3 - We make this stage to know the slit from which the electron entered. We design the two slots so that each slit is connected to a small tube on the side of the sensitive screen. The tube is too short to eliminate the deformation of the fabric A, so deformation remains. The micro tube liner is also an electron sensitive screen. And the distance between the two slits is less than the diameter of the (tube C). After the experiment, I think we'll see plots on the lining of one slit only. I think the talk of quantum entanglement theory is unnecessary anymore.

Conclusion

- Electron is a particle, not a wave. It is not divided into two electrons when it crosses the double slit.

- Electron has two types of motion, front and side.

- The universe is a space object swimming in a tissue of small particles located in positive and negatively charged lines, these particles resulted from the Big Bang, and they form the dark matter in the universe.

- The electromagnetic fields generated between the lines of dark matter give a force that can affect space objects. This force is the dark energy in the universe.

- The velocity of any object traveling in the cosmic tissue (dark matter) is not regulated but accelerated, as long as there is no distortion of the cosmic tissue.
- The electron moves in the cosmic tissue (which does not contain deformation) with increasing speed, reaching infinity

- The movement of an electron in an atom is subject to constant systemic deformation due to its nucleus pulling force

- Using a mathematical equation, we can calculate the speed of an electron and the acceleration of an electron

- The speed of light in the cosmic fabric is not constant but is increasing indefinitely (as long as there is no distortion of the cosmic fabric that light travels) (Einstein!)

- The acceleration of moving objects in the cosmic tissue increases as the size of the objects increases, and it decreases by increasing body mass

- The speed of light and objects is constant in space that does not contain cosmic tissue or (dark matter).

- There is an error in the age of the universe and the age of stars and planets, and I expect it to be more than the age now known, here I answer the question: How can the age of the universe be less than the age of a newly discovered star, 16 billion light-years away?

- The universe expands by free space objects that are not bound to any other object and therefore do not distort the cosmic tissue that it is traveling, because of its acceleration in motion, this acceleration is caused by dark energy (Hubble)

- The universe is fixed and does not expand in relation to the objects that travel in it and are connected with each other such as the solar system and galaxies (distortion of the cosmic tissue) (Einstein).

Calculate the constant light beam acceleration within one light year:

When we talked about the existence of cosmic bubbles, we said that here is a light beam that reaches the first ground observatory before the second beam that reaches the second Earth observatory late

The amount of time that the second beam (which crossed through the cosmic bubble) was delayed is the same as the amount of acceleration of the first light beam in the cosmic tissue when it crosses a distance \(d\) where \(d\) is the length of the cosmic bubble through which the second light passes. (The speed of light is constant in the cosmic bubble)

We observe two light rays in the laboratory (neglecting gravity, or if the experiment can be carried out in space), one passes through the air only, the other passes through the air and also through a bubble free of cosmic tissue length of 100 meters.

We receive the light beams with a sensitive screen and then we will see that the beam that crossed the bubble was delayed by \(X\) seconds from the other beam.
X seconds, it is the amount of light beam acceleration in the non-deformed cosmic tissue and also free of cosmic bubbles when it crosses a distance of 100 meters.

Every 100 meters light accelerates by (X)

every light year (9,460,730,472,580,800 meters) light accelerates by (Y)

Y = X \times \frac{(9,460,730,472,580,800)}{100}

Y = X (9,460,730,472,580,800)

Y = Constant light acceleration within one light year