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Abstract: 
Direct high-resolution investigations of a potentially habitable exoplanet may result in finding the 
signs of extraterrestrial life, arguably the raison d’être of space exploration. This can be achieved 
with a modest astronomical telescope, delivered to the focal region of the Solar Gravitational Lens 
(SGL) some 650 AU from the Sun. Given the current state of spaceflight technologies, this can be 
accomplished with a flight time of ~25 years. The payoff from such a truly unique space-based 
facility would be enormous. It is the only practical way to obtain a multipixel image of the surface 
of a potentially habitable exoplanet at a kilometer-scale resolution. Instruments required are a 
small telescope with a coronagraph and a spectrometer. A modest-cost (i.e., New Frontiers class) 
multi-smallsat spacecraft approach is being studied for the mission implementation – one that may 
enable a practical way to accomplish the mission sooner than would otherwise be expected. 
Although programmatically, exoplanet science resides in the NASA’s Astrophysics Division, an 
SGL imaging mission addresses the science objectives of three Divisions, including Astrophysics 
(science), Heliophysics (flying through the Interstellar Medium) and Planetary (deep space flight 
with multiyear observations of a dedicated target, analogous to a planetary orbiter), which would 
be a major benefit to multiple science and technology programs at NASA. See conceptual video 
description at https://youtu.be/Hjaj-Ig9jBs 
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1 Introduction: Key Science Goals and Objectives 
Direct detection of light from an Earth-like exoplanet in a habitable zone is a challenging task. The 
angular size of such an object is very tiny and it is very dim, requiring extremely large apertures 
or interferometric baselines. Light contamination from the parent star necessitates the use of 
advanced coronagraphic techniques. Light received from the exoplanet is exceedingly faint, on a 
noisy background. Detecting such a signal requires stable pointing and very long integration times. 
To capture a single-pixel image of an Earth-like exoplanet at 30 parsec (pc), a diffraction-limited 
telescope would require an aperture of ~90 km. Optical interferometers with telescopes of 
moderate size and large baselines would require integration times of hundreds of thousands if not 
millions of years to get a reasonable signal-to-noise ratio (SNR). Clearly, these scenarios are 
impractical, making direct high-resolution imaging of an exoplanet with a conventional telescope 
or interferometer a very difficult, if not impossible task. 
These challenges lead us to examine other ways to obtain high-resolution, multipixel images of 
distant, small and dim targets. After an extensive and still ongoing study (Turyshev et al., 2018), 
we concluded that the solar gravitational lens (SGL) is the only practical means to accomplish this 
exciting objective. The SGL takes advantage of the natural ability of our Sun’s gravitational field 
to focus and greatly amplify light – up to a factor of 100 billion – from faint, distant sources of 
significant scientific interest, such as habitable exoplanets. 
According to Einstein’s general theory of relativity, gravitation induces refractive properties on 
spacetime, so that light rays no longer follow straight lines. A massive object acts as a lens, bending 
photon trajectories (Turyshev & Toth, 2017). As a result, gravitationally refracted rays of light 
passing on two sides of the lensing mass converge. The Sun is massive and compact enough for 
the focus of its deflection to be within reach of a realistic mission. Its focal area begins at ~547.8 
AU (see Figure 1), on the line connecting the center of an exoplanet and that of the Sun. The SGL 
does not have a single focal point.  Rays with a larger impact parameter focus at a greater distance 
from the Sun, forming a focal half-line. A probe positioned on this focal line could use the SGL to 
amplify light from faint objects on the opposite side of the Sun (Eshleman, 1979).  
The remarkable optical properties of the SGL include major brightness amplification (~1011 for 
l = 1 µm) and extreme angular resolution (~10−10 arcsec) within a narrow field of view (Turyshev 
& Toth, 2017, 2019). A modest telescope at the SGL could be used for direct imaging of an 
exoplanet.  With a compression factor of (distance to the probe)/(distance to the exoplanet) ~10−4, 
the entire ~1.3´104 km image of an exo-Earth at 30 pc is projected by the SGL into a cylindrical 
volume with a diameter of ~1.3 km surrounding the focal line. Moving outwards while staying 
within this volume, the telescope 
will take photometric data of the 
Einstein ring around the Sun, 
formed by the light from the 
exoplanet. The collected data will 
be processed to reconstruct the 
desirable high-resolution image 
and other relevant information. 
The large heliocentric distances 
separating us from the beginning of 
the SGL focal region were previously hard to contemplate. But the success of Voyager 1, now 
more than 145 AU from the Sun (see Figure 1) while still transmitting data, combined with 

 
Figure 1. The SGL’s focal area begins at 547.8 AU or 4 light days out. 
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multiple recent developments in deep space exploration technologies, a mission beyond 550 AU 
appears more within reach. This allows us to consider practical applications of the SGL as an 
optical instrument that could be used for multipixel imaging and spatially resolved spectroscopy 
of an exoplanet (Turyshev et al., 2018).  
Currently envisioned NASA exoplanetary concepts would be lucky to obtain a single-pixel image 
of an exoplanet. In contrast, a mission to the focal area of the SGL, carrying a modest telescope 
and coronagraph, opens up the possibility for direct imaging with 1,000 × 1,000 pixels and high-
resolution spectroscopy of an Earth-like planet. An exoplanet at a distance of 30 pc may be imaged 
with a resolution of ~10 km on its surface, enough to see its surface features and potentially signs 
of habitability. This is depicted in a video (DeLuca, 2017). Our key objective, therefore, is to study 
a mission to the SGL to perform direct multipixel imaging and spatially resolved spectroscopy of 
a potentially habitable exoplanet. We understand that development of such a mission takes time. 
We argue that now is the time to begin this effort.  
Recently, under a 3-year grant from the NASA Innovative Advance Concepts (NIAC), we 
evaluated the feasibility of the SGL for direct multipixel imaging of an exoplanet (Turyshev et al., 
2018). We identified several practical challenges and determined that there are no fundamental 
limitations either with the concept or the required technologies. We analyzed the requirements 
with respect to operating a spacecraft at such enormous distances with the needed precision, 
studying i) how a space mission to the focal region of the SGL may conduct high-resolution direct 
imaging of an exoplanet by detecting, tracking, and investigating the Einstein ring around the Sun, 
and ii) how such an approach could be used to detect the presence of life on an exoplanet. 
Importantly, we determined that the foundational technologies already exist, and their 
development is already underway.  
2 Technical Overview  
Theoretical foundation: A wave-theoretical 
description of the SGL (Turyshev & Toth, 
2017) demonstrated its remarkable optical 
properties. The SGL amplifies the brightness of 
faint sources by many orders of magnitude (i.e., 
~1011 for  l = 1 µm), not achievable with 
conventional astronomical instruments. Its 
angular resolution is ~0.1 nas, making it well-
suited for imaging distant objects. 
Consider an Earth-like exoplanet at 30 pc. Its 
angular diameter is 1.4 × 10−11 rad. To resolve 
the disk of this planet as a single pixel, a 
telescope array with a baseline of ~89.6 km is 
needed. Resolving the planet with 1,000 linear 
pixels would require a baseline of ~10,000 km (~12RÅ), which is not feasible. 
In contrast, a modest 1 m telescope, at the focal line of the SGL at 750 AU from the Sun, can 
sample the light field of the SGL with a collecting area equivalent to that of a diffraction-limited 
telescope with an aperture of ~90 km and the angular resolution of an optical interferometer with 
a baseline of 12RÅ. But even with such a baseline, this instrument will take millions of years to 
collect enough light to overcome the noise from zodialc light, needed to reach SNR of 7.  
Our understanding of the optical properties of the SGL improved with our recent efforts. Figure 2 

 
Figure 2. Optical properties of the SGL (Turyshev & Toth, 
2017). Up-Left: Amplification of the SGL. Up-Right: Point 
spread function. Bottom: SGL’s gain as seen in the image 
plane as a function of possible observational wavelength.  
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FIG. 8: Gain of the solar gravitational lens as seen in the image plane as a function of the optical distance z and observational
wavelength λ. On both plots, the solid line represents gain for z = 600 AU, the dotted line is that for z = 1, 000 AU.

Across the image plane, the amplification oscillates quite rapidly. For small deviations from the optical axis, θ ≈ ρ/z.
Using this relation in (140), we see that the first zero occurs quite close to the optical axis:

ρSGL0 ≃ 4.5
( λ

1 µm

)

√
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z0
cm, or, equivalently, ρSGL0 ≃ 4.5
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) b0
R⊙

cm. (142)

(Note in (142) the inverse ratio of z vs. z0 and b0 vs R⊙.) Equation (142) favors larger wavelengths and larger
heliocentric distances or, similarly, impact parameters.
Thus, we have established the basic optical properties of the solar gravitational lens. By achromatically focusing

light from a distant source [17, 34], the SGL provides a major brightness amplification and extreme angular resolution.
Specifically, from (135) for λ = 1 µm, we get a light amplification of the SGL of µ ≃ 1.2 × 1011, corresponding to a
brightness increase by δmag = 2.5 lnµ = 27.67 stellar magnitudes in case of perfect alignment. Furthermore, (140)
gives us the angular resolution of the SGL of θSGL ≃ 1.1× 10−10 arc seconds.
We note that if the diameter of the telescope d0 is larger than the diffraction limit of the SGL (i.e., larger than the

diameter of the first zero of the Airy pattern), it would average the light amplification over the full aperture. Such
an averaging will result in the reduction of the total light amplification. To estimate the impact of the large aperture
on light amplification, we average the result (135) over the aperture of the telescope:
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For an aperture of d0 = 1 m at z = 600 AU, this results in the reduction in light amplification by a factor of 0.025,
leading to the effective light amplification of µ̄z = 2.87 × 109 (i.e., 23.65 mag), which is still quite significant. The
effect of the large aperture is captured in Fig. 9, where we plot the behavior of each of the two terms in curly braces
in (143) and also their sum. Although each term oscillates and reaches zero, their sum never becomes zero.
As seen from a telescope at the SGL, light from a distant target fills an annulus at the edge of the Sun, forming the

Einstein ring. At a distance z on the focal line, an observer looking back at the Sun will see the Einstein ring with an
angular size that is given by αER = 2b0/z = 4rg/b0. Using this equation, we determine the angular size of the ring as

αER ≃ 3.50′′
√

z0
z
, or, equivalently, αER ≃ 3.50′′

R⊙

b0
. (144)

A telescope with aperture d0, placed at the heliocentric distance z on the optical axis, receives light from a family of
rays with different impact parameters with respect to the Sun, ranging from b0 to b0 + δb0. Using (144), these rays
are deflected by different amounts given as α1 = (b0+

1
2d0)/z = α0R⊙/(b0+

1
2d0), for one edge of the aperture, where

α0 = 2rg/R⊙, and α2 = (b0 + δb0 − 1
2d0)/z = α0R⊙/(b0 + δb0 − 1

2d0), for the other edge. Taking the ratio of α2/α1,
we can determine the relation between δb0 and the telescope diameter, d0, which, to first order, is given as δb0 = d0.
As a result, the area of the Einstein ring that is seen by the telescope with aperture d0, to first order, is given by

AER = π((b0 + δb0)2 − b20) ≃ 2πb0d0. For different impact parameters the area behaves as

AER ≃ 4.37× 109
( d0
1 m

) b0
R⊙

m2. (145)
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FIG. 8: Gain of the solar gravitational lens as seen in the image plane as a function of the optical distance z and observational
wavelength λ. On both plots, the solid line represents gain for z = 600 AU, the dotted line is that for z = 1, 000 AU.
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU. The solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:
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c
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with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by
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As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern

(i.e., the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.
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As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Figure 6 shows the resulting Airy pattern
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3-D Airy pattern of the SGL
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shows the SGL’s point spread function (PSF), resolution and light amplification, all of which are 
essential parameters to the design of an SGL mission. 
Imaging concept: The image of an exoplanet, for instance at 30 pc, is projected by the SGL to a 
cylinder with a diameter of ~1.3 km (corresponding to the Einstein ring around the Sun with the 
same 1.3 km thickness) in the immediate vicinity of the focal half-line. Imaging an exoplanet at 
1,000 ´ 1,000 pixels requires using the spacecraft as a single-pixel detector measuring the overall 
brightness of the Einstein ring, and moving it within the image plane in steps of 1.3 km /103 ~ 1.3 
m while staying within the ~1.3 km diameter cylindrical volume. So, each ~1 m pixel in the image 
plane corresponds to a pixel diameter of ~10 km on the surface of the planet. 
The PSF of the SGL is quite broad (see Figure 2), falling 
off much more slowly than the PSF of a thin lens. 
Consequently, for any pixel in the image plane, this leads 
to combining light not just from a particular pixel on the 
surface of the exoplanet but also from many adjacent 
pixels. This leads to a significant blurring of the image. 
Knowledge of the PSF’s properties makes it possible to 
apply deconvolution algorithms to reconstruct the 
original image. These algorithms require a significant 
signal to noise ratio (SNR).  Fortunately, the light 
amplification of the SGL makes a SNR of over 103 achievable over just 1 second of integration 
time.  This is sufficient for nearly noiseless deconvolution (Turyshev et al., 2018).  
Light contamination from the parent star is a major problem for all modern planet-hunting 
concepts. However, for the SGL, due to its ultrahigh angular resolution (~10−10 arcsec) and very 
narrow field of view, the parent star is completely resolved from the planet with its light amplified 
~104 km away from the planet’s optical axis, making the parent star contamination issue negligible. 
Instrument: Thanks to the large 
photometric gain of the SGL, its 
high angular resolution and strong 
spectroscopic SNR (103 in 1 sec, 
see Figure 5), a small diffraction-
limited high-resolution 
spectrograph is sufficient for the 
unambiguous detection of life 
(Turyshev et al., 2018). 
As the instrument ultimately 
determines the size of the 
spacecraft, we addressed the 
issues of coronagraph design. For this, we require the coronagraph to block solar light to the level 
of the solar corona brightness at the location of the Einstein ring (Figure 3). 
At 1 µm, the light amplification of the SGL is equivalent to −28.2 mag, so an exoplanet, initially 
seen as a 32.4 mag object, now becomes a ~4.2 mag object. Averaged over a 1 m telescope, light 
amplification is reduced to −23.25 mag. The exoplanet becomes a 9.2 mag object, still quite bright. 
However, the image will include noise in the form of light from the solar corona, the residual solar 
light, and the zodiacal light. Assumptions were validated by a coronagraph design and simulations. 
Suppressing the Sun's light by a factor of 10−6 when imaging with the SGL is significantly less 

 
Figure 4. Left: Gaussian soft-edge has a great impact on light suppression 
ability of the coronagraph. Right: Simulated coronagraph performance 
showing the solar light suppression by 2×10−7, sufficient for SGL imaging. 

 
Figure 3. Solar corona brightness, as seen by 
the telescope at the focal area of the SGL. 
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Model for the solar corona brightness from November & Koutchumi (1996) 
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demanding than the requirements for modern-day exoplanet coronagraphs, which must suppress 
the parent star’s light by a factor of 10−10 to detect an exoplanet at least as a single pixel.  
We evaluated the performance of the coronagraph with a Fourier-based diffraction model.  The 
Sun is modeled as a 
dense collection of 
incoherent point 
sources. The corona 
is represented by a 
power law profile of 
~r−3 at the relevant 
heliocentric ranges. 
Design parameters 
include the telescope 
size, distance from 
the Sun, occulter 
mask profile and Lyot mask size. The full width at half maximum of the Gaussian soft edge has a 
significant impact on the coronagraph’s performance (Figure 4). 
Defining contrast as brightness normalized to peak brightness without coronagraph, we achieved 
a total planet throughput of ~10%. Figure 4 shows the contrast at the image plane after the 
coronagraph. At a contrast of 2 × 10−7, the leaked solar light is ~5 times lower in intensity than the 
corona, satisfying the stated objectives for imaging with the SGL (Turyshev et al., 2018).  
Sensitivity estimates: A telescope operating at the focal 
region of the SGL at various heliocentric distances 
would see a strong signal. Assuming that we observe a 
system like the Sun-Earth system at various distances, 
namely 1.3 pc, 10 pc and 30 pc, we estimated the 
corresponding photon fluxes.  Figure 5 shows that 
depending from the distance to the exoplanet, the flux 
will be at the level of 105-106 photons/s. Ignoring 
contributions from the solar corona, this translates into 
a significant SNR in 1 s, shown in Figure 5. Such a 
healthy, amplified signal may be used for imaging. 
Next, we include the noise contribution from the solar 
corona and estimated the realistic resolution that may be 
achieved. Figure 6 shows that over one year of 
integration time, it is possible to achieve an impressive 
pixel resolution of a distant target. As heliocentric 
distances increase and the Einstein ring further 
separates from the Sun, the contribution from the solar 
corona gets ever smaller, yielding higher SNR and thus, higher resolution. 
Image Reconstruction: Creating a megapixel image requires ~106 separate measurements. For 
typical CCD photography, each detector pixel within the camera is performing a separate 
measurement. This is not the case for the SGL. Only the pixels in the telescope detector that image 
the Einstein ring measure the exoplanet, and the ring contains information from the entire 
exoplanet, due to the disproportional image blurring by the SGL and also due to the relative 
distribution of different regions of the exoplanet to different azimuths of the ring.  Rotational 

 
Figure 5. Left: Photon flux received from an exo-Earth at different heliocentric distances. 
Right: Detection sensitivity (i.e., the SNR in 1 sec) for exo-Earth at different distances. 
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Photon rate: - correction for solar 
spectral irradiance
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Flux from an exo-Earth

Amplified signal from distant exoplanets may be used for imaging
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Image diameter (unresolved):

THE SOLAR GRAVITATIONAL LENS

Gravity only: SNR & Integration Time

Given the telescope’s diameter, d, and SNR per source 
pixel, SNRS, the maximum SNR per imaged pixel:

Observational equation for imaging with the SGL:
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Imaged 
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Figure 6. Image resolution with SGL and the 
solar corona: Top: 1 year. Bottom: in 10 years.  
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SGL offers pretty impressive capabilities. Further work is justified.
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(To image exo-Earth at 10pc with N = 100 pixels: telescope diameter ~ 3,000 km is needed).

THE SOLAR GRAVITATIONAL LENS

Resolution in 10 years of integration

Heliocentric distance, AU
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deconvolution yields super-resolution that allows us to see a major part of the surface of the 
exoplanet in a few months of integration time; it would also allow us to peak under the cloud cover. 
Using direct deconvolution and a 1 m telescope, it would take ~1.2 years to build a 500 ´ 500 pixel 
image of the entire planet (Figure 7). Two factors that can reduce the integration time by a factor 
of up to 100 are i) the number of image pixels, N, and ii) the telescope diameter.  The higher the 
desirable resolution the longer is the integration time, T, scaling as T ∝ N. Another scaling law is 
related to the telescope diameter, d. A telescope with double the aperture will collect four times as 
many photons. Its diffraction pattern will be twice as narrow and, thus, it will collect half as many 
solar corona photons. The integration time scales as T ∝ d −3.  Thus, a larger image of 1,000 ´ 
1,000 pixels may be produced in ~3.4 years if a 2 m telescope is used.  However, T may be reduced 
if there are time-varying features in the planetary albedo (regular features and/or cloud pattern, 
etc.). The time is also reduced by ~n−1 if n imaging spacecraft are used. Other factors include i) 
the rotational motion of a crescent exoplanet, and ii) the increase in heliocentric distance and the 
resulting improvements in coronagraphic performance. 

Turyshev et al. (2018) have shown that although imaging with the SGL is complex, no fundamental 
“showstoppers” exist. Given the enormous light amplification provided by the SGL, spectroscopic 
investigations, even spectro-polarimetry could be viable.  Ultimately, we could obtain not just an 
image, but a spectrally-resolved image over a broad range of wavelengths, characterizing the 
atmosphere, surface materials and biological processes on that exoplanet.  
Our analysis suggests that with all the effects taken into account, including scattering of light by 
the ever-present interstellar dust, we could collect enough light in approximately half a year to 
form the first ever direct megapixel-class image of an exoplanet. As nothing is stationary in the 
universe—the planet orbits its own star which also moves with respect to our own Sun—the 
spacecraft must have the propulsion system that would be used to compensate for such a motion. 
If we were limited to conventional imaging by a giant unitary telescope or by multiple telescopes 
arrayed for interferometry, the telescope or telescopes would have to collect light for millions of 
years. An SGL-aided instrument could do this job in a few years. 

3 An approach for science implementation: reaching and operating at the SGL focal region  
Direct investigations of exoplanets with the SGL is within both astrophysics (exoplanet science) 
and planetary (similar to a planetary orbiter to a chosen target.) Observing the identified exoplanet 
begins at ~650 AU and then requires flying outward along the focal line. To do this in less than 30 

 
Figure 7. Deconvolving broadband images. Left: Original image. Center: convolution with the SGL. Right: 
Deconvolved image. Major features are clearly visible. Spatially resolved spectroscopy is possible. As the telescope 
aperture is much larger than the first minimum of the PSF, the actual SGL’s amplification is wavelength independent. 
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years requires traveling ~8 times faster than Voyager 1. In addition, to assemble an image from 
brightness measurements of the Einstein ring, the spacecraft will have to maneuver small distances 
around the focal line. It also will have to compensate for the orbital motion of the target planet and 
the barycentric motion of the Sun. As hard as those tasks are, they are ~103 (if not 106) times easier 
than competing approaches to observe an exoplanet, which would involve the huge (and 
enormously expensive) task of building kilometer-scale instrumentation in space. Furthermore, all 
the technologies required for a mission to the SGL are already either in development or operational. 
Propulsion options: To get to heliocentric distances beyond 600 AU in 30 years or less, a 
heliocentric velocity of over 30 AU/yr is required.  To achieve this speed, we considered several 
propulsion options that and may be broadly presented as follows:  
1. Perihelion Propulsion (via Oberth maneuver) that includes two options: a) solid rocket motor 

that possesses a very high propellant-to-inert-mass ratio, and b) solar thermal propulsion with 
a specific impulse of Is ~800-1000 seconds.  

2. Outbound Propulsion (electric), which includes four options: a) Solar Electric Propulsion 
(SEP), which can be used to initially accelerate the probe in the inner solar system then coast, 
b) Radioisotope Electric Propulsion (REP) that is scalable to a ~100-500 kg spacecraft, c) 
Nuclear Electric Propulsion (NEP) with somewhat higher thrust-to-mass ratio, but with an 
overall mass being >2,000 kg, and d) Laser Electric Propulsion, that is based on beamed energy 
that allows for a very high thrust-to-mass ratio, but eventually the laser is too far away.  

3. Outbound Propulsion (sails), that includes three options: a) Solar Sail, which offers a 
propellantless acceleration in the inner solar system, b) Electric Sail, that is pushed by the solar 
wind to allow to achieve thrust further out, and c) Laser Sail, offering an option that could 
allow for a very high initial thrust, but requiring a very high power laser.  

Although, some exotic options exist, including fusion and thermonuclear pulsed propulsion, we 
opted not to consider them. Also, laser electric, nuclear 
electric, and nuclear thermal systems require major 
policy and funding changes in the space program; thus, 
they were also not considered at this time.   
Perihelion propulsion requires carrying and firing a 
large motor with propellant very close to the Sun 
(<3RS). How close is shown in Figure 8: to reach the 
required velocity out of the solar system would require 
a solar flyby of a 2-3RS. The spacecraft must carry a 
large (heavy) thermal shield to enable a very close solar 
flyby.  It would clearly mean a very expensive 
spacecraft and development of an elaborate heat shield. 
NASA is studying this approach now.  
The two other options—solar and electric sails—have the advantage of carrying no propellant and 
not having to go so close to the Sun, perhaps “only” to 0.1 AU (20 RS). They also use no propellant 
or large propulsion motors as they are propelled by the Sun.  They are therefore compatible with 
a small spacecraft design, taking advantage of the rapidly advancing technology of smallsats.  
These will be lower cost and can incorporate multiple spacecraft or swarm architectures.  Solar 
sails in particular have now flown on several missions, one in fact traveling interplanetary 
distances to Venus (the Japanese IKAROS mission). This is compelling, as it can lead to 
affordable spacecraft development that can be replicated for multiple targets and multiple 

 
Figure 8. Perihelion propulsion trade space. 
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objectives.  However, the advantage of no required propellant comes with the disadvantages of 
no maneuvering capability far from the Sun and no natural source of power.  A small RTG or 
other nuclear battery system and electric propulsion micro-thrusters will be required for the 
relatively small amount of maneuvering Dv that will be required.   
The electric sail is a new concept, which was only theoretically studied thus far.  Solar sail 
spacecraft are flying, and the technology is developing with advanced materials and lightweight 
deployable structures.  Our current SGL mission 
study is thus focused on the smallsat solar sail, but 
we recommend that a more comprehensive 
tradeoff study be conducted for cost and mission 
implications of the different propulsion options. 
The speed of the solar sail spacecraft is dependent 
on area, mass and the thermodynamic properties 
of the sail material.  This is illustrated in Figure 9, 
which shows heliocentric velocity as a function of 
spacecraft area-to-mass (A/m) ratio for different 
values of solar perihelion. To reach a velocity of 
> 20 AU/yr, we seek an A/m of over 200 m2/kg 
and perihelion at <0.15 AU (30 RS).  A 200 ´ 200 
m sail propelling a 50 kg spacecraft and flying at ~0.1 AU will exit the solar system at a speed of 
~25 AU/year, which is higher than the velocity achievable with the other practically possible 
means of propulsion discussed earlier.  This is a feasible design goal.   
Sailcraft: The solar sail spacecraft can be launched at very low energy with a small launch vehicle 
or even as a secondary payload.  It will then spiral in toward the Sun, offering the opportunity for 
solar corona observations, and then, after its closest 
solar flyby be oriented for the maximum sunlight 
pressure to exit the solar system at high velocity.  The 
trajectory is shown in Figure 10. 
Current solar sail materials are made of aluminized 
polymers or polyimides, e.g. Mylar™, Kapton™. 
These may be produced as ultrathin (1-2 µm thick) 
large films. While current solar sail technology has 
been successfully tested in a number of near-Earth 
and inner solar system missions, an interstellar flight 
with a close perihelion slingshot is beyond the reach 
of current sail technology. Indeed, sail materials will 
need to withstand an expected solar radiation flux >400 times then what reaches Earth, extreme 
solar plasma and encounter with high energy particles without degradation of performance. 
Aluminized polyamides absorbing over 10% of solar radiation will simply heat well above the 
melting point of both aluminum and polyamide. Novel materials with very low solar absorptivity 
(desirably <1%) and very high thermal emissivity (>0.8) that can withstand extreme temperatures 
and solar environment over the propulsion phase would be needed. In our study we have analyzed 
a wide range of high temperature materials. While refractory metals, such as tungsten and 
molybdenum, possessing very high melting points may seem promising, they absorb over 30% 
of sunlight and serve as very poor thermal emitters causing them to heat to extreme temperatures. 

 
Figure 9. Design trade space for a direct transfer from 
the Earth to the perihelion using sail propulsion. 
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Refractory ceramics with high electronic band gap, such as alumina, silica, magnesium difluoride 
and boron nitride, in contrast, are nearly transparent, implying that a small fraction of sunlight is 
absorbed (~1%). We further showed that by structuring (e.g., with nanoscale lithography), thin 
sub-micron thick films of these ceramic materials may be made high reflective ensuring efficient 
solar radiation pressure harnessing. Large area fabrication of such nanopatterned ultrathin films 
will be informed by standard scalable processes, such as solution processing techniques and roll-
to-roll CVD materials growth. In addition, recent deployment of roll-to-roll high resolution 
nanolithography would enable fabrication of desired patterns.  
Our studies indicate that with the use of such high temperature nanostructured ceramics ultralight 
weight solar sail materials (<1 g/m2) permitting 10 RS flyby are possible. These sails would permit 
exit velocities in excess of 25 AU/year.  The lighter the spacecraft, the greater the exit velocity 
and shorter the flight time.  The size of the spacecraft will be principally determined by the 
telescope size and the spacecraft power needed.  Electric power will drive the micro-thrusters 
used to maneuver the spacecraft in the focal region.  Anticipated maneuver distances of 1 km are 
not large. Even to go from one exoplanet’s focal line to another in the same star system is feasible.  
Surveys of an entire exoplanetary system can be done.   
On-board propulsion: A preliminary design suggests 
that small micro-electric thrusters powered by ~5 watt of 
power will be sufficient. The largest maneuver required 
is that due to solar wobble, the motion of the sun around 
the barycenter of the solar system.  Navigation will be 
done using first the host star’s focal line for guidance and 
then maneuvering to the exoplanet’s focal line. Figure 11 
shows that the small amount of Δv and fuel required for 
maneuvers.  A system like the TRAPPIST system with 
multiple potentially habitable planets can have its 
exoplanets’ focal lines traversed, permitting imagining of several exoplanets on a single mission.   
In fact, it will also be possible to observe entire planetary systems, several exoplanets, orbiting the 
same star since their focal lines will be relatively close. This makes the SGL-enabled imaging 
concept similar to the missions currently conducted by the solar system planetary community.  
Power & Communication: Power and communications are two of the technological challenges 
for a spacecraft operating beyond 650 AU.  Fortunately, technology programs in NASA already 
are dealing with both.  A laser communications system with today’s technology operating at 1.35 
µm with a 40 cm transmitting telescope to a 2.5-m receiver can provide a data 80 bits/second data 
rate over 200 AU and even 12.5 bits/second over 500 AU.  These data rates yield 48 and 15.6 
Mbits/week respectively – sufficient for download images continuously.   
Small RTG power is a special need, but even with old technology, a single NASA MMRTG 
provides 27 watts electric with a mass ~10 kg.  RTG usage on smallsats is the subject of current 
research but even adapting old technology suggest that a total spacecraft mass < 50 kg is possible.   
The size of the smallsat will be dictated by the required telescope size (e.g., 1-2 meters) and the 
radioisotope power system requirements. The power system will supply the energy for electric 
micro-thrusters to enable maneuvering around the focal line as the spacecraft flies outward beyond 
650 AU. It will have months and years to observe the target exoplanet and communicate with the 
Earth. A multiple spacecraft architecture may enable a robust communication architecture.   
Multiple Spacecraft Architecture: The resulting smallsat can be a conceptually simple design, one 

 
Figure 11. Δv, fuel needed for maneuvering. 
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whose cost might be moderate enough to permit multiple spacecraft to be deployed.  The multiple 
spacecraft approach may permit a communications relay system over the large interplanetary 
distances involved. Different spacecraft might also have different instrumentation. Some can be 
devoted to fields and particles measurements in the interstellar medium. As the mission trajectory 
goes in toward the Sun, it may be used to establish a corona-net in a near circular orbit of several 
satellites continuously monitoring the Sun from many vantage points. An Artificial Intelligence 
(AI) algorithm design is being investigated to manage a constellation of spacecraft in the focal 
region of the SGL. A multi-spacecraft architecture permits dividing and specializing mission 
functions between different spacecraft.  One concept under study is to fly the coronagraph and 
imager on different spacecraft and using measurements from the former to delete the coronal effect 
on the latter.  Another concept is to instrument some of the spacecraft specifically with interstellar 
medium fields and particles instruments. Others may have instruments to be used only during the 
close Sun flyby for studying its corona or be targeted for close Kuiper Belt object flybys.  These 
ideas are conceptually possible but need to be considered in a mission design tradeoff study.   
Organization, Partnerships, and Current Status: Currently, a number of organizations involved 
in the study of the SGLs science applications as well as in the relevant architecture and mission 
design studies. The collaboration includes NASA Jet Propulsion Laboratory, Caltech, The 
Planetary Society, The Aerospace Corporation, UCLA, NASA Marshall SFC, University of 
Arizona, Tucson, Texas A&M University, NXTRAC Inc., individual collaborators in Canada and 
Europe. We are engaged with Breakthrough Initiatives via their StarShot Project. There are 
several synergistic NIAC efforts, including Princeton Satellite Systems, UCSB, Wichita State 
University. In addition, there is a great pubic interest and engagement in the mission objectives.  
Schedule: The challenges of getting to and operating from the focal region of the SGL are 
significant and require us to be able to (i) deconvolve the image collected pixel-by-pixel by 
measuring the exoplanet’s Einstein ring; (ii) reach the solar gravity lens focal line for the 
exoplanet beyond 650 AU from the Sun in a reasonable mission time (e.g., less than 30 years), 
requiring a heliocentric velocity over 20 AU per year; and (iii) carry out this deep space mission 
with smallsats to permit an affordable and robust mission design.  However, these challenges are 
not showstoppers; they may be addressed if a focused effort is initiated in the coming decade.  
Much remains to be done. Technology programs, including the flight demonstration of the sail to 
low perihelion and high solar system exit velocity, the laser communications system and the long-
life development of electric micro-thrusters should be accomplished in 5-7 years.  The mission to 
the focus of the SGL will then be ready for flight development beyond the conceptual phase.  The 
immediate need is to place this mission into the 2020s decadal planning so that a broad technology 
and system study can be conducted with specification of mission and technology requirements. 
Cost: We cannot yet provide a serious cost estimate – a mission study to this end is the principal 
recommendation of this white paper.  The conventional propulsion (chemical or solar thermal 
close to the Sun or nuclear thermal or nuclear electric) will likely be of Flagship class.  The smaller 
spacecraft approach with solar sail will more likely be no larger than New Frontiers, similar to 
the New Horizon spacecraft now travelling in the Kuiper Belt.  Incorporating new technology 
will be largely funded by space technology programs which, in our current study 
recommendation, includes a technology test flight inward to the Sun to test all the solar sail and 
smallsat design.  The recommended mission study should develop the multiple mission concept 
with a total cost of about one billion dollars.  A mission to observe extraterrestrial habitability 
and life for one billion dollars will be the greatest bargain in the history of space exploration.   
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4 Tear Down the Stovepipes – Perform a Mission Design Study 
Exoplanet discovery has burgeoned. Kepler has identified many potentially habitable worlds, and 
more is expected from TESS, JWST, other follow-ups. There are also missions yet in formative 
stages, such as the Exo-C, Exo-S, HabEx, LUVOIR concepts (Turyshev et al, 2018). 
However, there is no concept for direct multipixel imaging of an exoplanet. All the exoplanet 
imaging concepts currently considered aim to capture light from an Earth-like exoplanet as a single 
pixel. These missions would provide globally averaged measurements of the atmosphere, identify 
major biomarkers, etc. However, the SGL will open scientific questions to the exoplanet 
community that are currently only open to planetary scientists in the solar system (e.g., studying 
surface landforms to evaluate the geologic evolution of the planet). In addition, a spatially resolved 
spectroscopic image allows us to probe small structures and detect weak features that would be 
lost in a global average (e.g., surface volcanism, land/water interactions, spatially limited 
biosignatures). Also, the SGL provides the opportunity to make a direct detection of life, as 
opposed to the indirect detection from a globally averaged spectroscopic biomarker.  
Discovery and identification of extraterrestrial life is surely the most significant and important goal 
of space exploration. And, its most elusive one.  No matter how strong the hints, e.g.: atmospheric 
discoveries of water, methane, oxygen or surface feature and color changes; anything short of a 
close-up observation of an unmistakable life process will be debated.  On an exoplanet, there is 
only one practical way to get such close observations: using the 100 billion times magnification 
power of the SGL to observe the planet over months and years. Is this possible? This question is 
the subject of our 3-year NIAC study (Turyshev et al, 2018).  
Concluding, we would like to confront what is perhaps an even bigger challenge: breaking down 
the stovepipes within the Science Mission Directorate. The mission’s science goals are within the 
scope of astrophysics, but the focus in astrophysics is on large telescopes trying to make one-pixel 
indirect images of exoplanets. The mission trajectory through the deep interstellar medium is of 
interest to heliophysics, but the focus there is reaching only a bit further than has Voyager with 
faster spacecraft for fields/particles measurements. Mission operation, the detailed and continuous 
observation of a planetary surface, is planetary science, but the current focus there is on planets in 
our solar system. The proposed concept employs a multi-spacecraft architecture and mission 
design, which will enable carrying out secondary science objectives in heliophysics and planetary 
science, while focusing on the principal goal of sending back high-resolution images of a likely 
habitable, possibly inhabited exoplanet.  To consider any of this, however, first the stovepipes 
must be broken down, so that a serious mission study with this new architecture can be considered.   
A mission to the SGL is a new mission concept, with enormous scientific potential, but technical 
issues involving propulsion, communication, autonomy still must be resolved (Turyshev et al., 
2018). Therefore, we ask the NAS Decadal Committee to endorse a study of mission and system 
concepts capable of exploiting the remarkable optical properties of the SGL for direct high-
resolution imaging and spectroscopy.  Such missions could allow exploration of exoplanets relying 
on the SGL decades, if not centuries, earlier than possible with other extant technologies.  We 
would need to conduct a system study of the mission concept including imaging, propulsion, 
CONOPS, and smallsats.  The study will focus on the feasibility of the SGL mission with the aim 
of life detection, multi-pixel, kilometers scale direct imaging of a potentially habitable exoplanet.  
This work is partially supported by NASA Advanced Innovative Concepts (NIAC) and is performed at the 
Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National 
Aeronautics and Space Administration. © 2019. All rights reserved.  Contributions from the Keck Institute 
for Space Science (KISS) and the Aerospace Corporation are also acknowledged.  
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