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1. Abstract (overview and impact) 
 
One of the central difficulties in neutrino astrophysics is the problem of identifying and 
classifying their flavors, energies, masses, relativistic effects, interactions with Standard 
Model particles, trans-Standard Model particles (e.g. SuperSymmetry), and Dark Matter. 
Moreover, neutrinos that arrive at the Earth are omnidirectional and it is a fundamental 
goal to resolve their possible signal profiles and signatures from background. However, 
neutrino technology is rapidly advancing and progressively solving these problems.    
 
Consequently, an increased ability is anticipated to evaluate neutrino sources and 
identify possible artificial sources of neutrinos, a prime goal of searches for 
extraterrestrial intelligence (SETI). An example -  case in point  -  is that Kardashev-
Dyson advanced technology civilizations, expending the power needed to accomplish 
large scale planetary modifications and maneuvers, could likely utilize energy sources 
that release large numbers of neutrinos, with specific identifiable signatures or profiles.  
 
Consequently, the goal of detecting possible neutrino signatures, impacts directly on 
both a deeper understanding of neutrino physics as well as on the assessments of 
possible communications from advanced technological civilizations.  However, on this 
note, it is also relevant to point out that there are differing opinions – and caveats - as to 
the advisability of possible indiscriminate communication transmissions from the Earth. 
Au contraire, advanced civilizations may select cautious choices, if at all, to do so. 
Furthermore, some advanced civilizations may reject communications and select to 
remain hidden for security and well-being. Others may establish confidential interstellar 
communities and avoid haphazard broadcasts. In any case, communications, such as 
may exist, may well be difficult to distinguish and could be hidden under several codes, 
layers, or covert veiled wraps.   [6-9, 19, 26, 28, 34, 48] 
 
 
2. Issues 
 
Here, we briefly review a few problems in neutrino research and the possible use of 
neutrinos for interstellar and intergalactic communications. The issue is the search for 
extraterrestrial intelligence by neutrino communication reception. Several well-known 
milestones paved the way for this goal, including work involving photons by Cocconi 
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and Morrison in 1959, Drake in 1965, Tarter in 2001, as well as many others.  [11, 18, 
26, 45, 48, 60, 66, 72] 
 
 
3. Neutrinos 
 
The three flavors of neutrinos (lepton Fermions) are  electron, muon, and tau neutrinos. 
Additional types of neutrinos may include sterile and heavy neutrinos. Some neutrinos 
are remnants of the Big Bang (approximately 14 billion years ago) and may differ from 
neutrinos produced by nuclear (bomb) explosions, radioactive decay, atmospheric 
impact by cosmic rays and solar wind, particle accelerators, nuclear reactors, stars, 
supernovae, quasars, black holes, neutron stars, and red dwarfs. Neutrinos are 
products of the Weak force charge or neutral currents (W-, W+, and Z0 Bosons), 
crisscross the universe, and rarely interact with matter.1  
 
For example, neutrinos can be produced by nuclear beta decay [55] and in the following 
case, an anti-neutrino is produced: 

 
 
Another example is the reaction producing positrons, neutrinos, and energy in stars (via 
the carbon cycle): 
p + p + p + p => He4 + e+ + e+ + ne + ne  + 26.7 MeV 
 
Seventy billion per cm2 per sec of these ne’s should be detected at the Earth. However, 
1/3 of these are detected and this is due to neutrino flavor changes, termed neutrino 
oscillation. Through oscillations, the three neutrino flavors transform among one 
another, while traversing various distances, and they have internal ‘clocks’, governing 
when to transform. The following are the 6 leptons of the Standard Model. 2 
 

 
 
Flavor transfiguration from one neutrino to another of the three is an oscillatory event, 
embodied by functions of neutrino wave travel-distance. This neutrino-traversed 
oscillation distance is inversely proportional to the difference between each neutrino 
mass squared and proportional to the average neutrino energy. Moreover, superposition 
of mass eigenstate mixing coefficients control the overall probability. Unitary 3x3 matrix 
equations are produced by the mixing coefficients.   
 
|nf >= Ufj |nj >  
 

                                                        
1 For example, there are 300-400 neutrinos per cubic centimeter and trillions of neutrinos traverse the 
human frame per second.  [42] 
2 However, neutrino mass and oscillation contribute to amending physics beyond the Standard Model. 



 White Paper NAS: State of the Profession Considerations Shapshak 

7/4/19  4 

Ufj is a unitary matrix; nf represents the three neutrino flavors (eigen states), ne, nµ, and 
nt. In addition, nj  represents the three putative neutrino masses, n1, n2, and n3. The 
values in the unitary matrix are based on four parameters: a phase and three angles, 
which are determined by oscillation experiments as well as from various models for 
neutrino production.3 
 
In vacuo, the complete equation of neutrino oscillations (flavor change) is: 
 
P(naà nb) = dab – 4Sk>jRe(U+

akUbkUajUpj)sin2(Dmkj2L/4E) + 
2Sk>jim(U+akUbkUajUpj)sin(Dmkj2L/4E)     
 
However, for neutrinos traveling through matter, the flavor change probability equation 
is: 
 
P(naà nb) = sin22(theta)Msin2 (DmM2x/4E)  
 
Much effort is being invested to decide neutrino masses; among many, one remote 
possibility, proposed by Williams in 2001, is to produce a very high intensity yield muon 
source on the Moon (thereby reducing environmental and other radiation toxicity 
dangers) and then measure neutrinos directed to the Earth.  
 
Among many complications, advanced civilizations will have to deal with difficulties of 
neutrinos traversing large distances, at times traversing stars, various interstellar and 
intergalactic media, Dark Matter, as well as relativistic and QCD upshots.  [2, 14-17, 20-
25, 29, 32, 33, 40-44, 46, 54-56, 58, 70, 78]   
 
 
4. Neutrinos and Intergalactic Communication. 
  
The problem that remains after many decades of the detection of extraterrestrial 
intelligence using photons is the lack of signal detection. In 1977, Saenz and colleagues 
proposed to use beams of neutrinos (energy range 1-100 GeV to produce 
communications on a global distance scale). At the time, such beams could be 
produced from proton accelerators. Next, in 1979, Pasachoff and colleagues proposed 
that advanced civilizations may utilize neutrino production for communication, which we 
may detect on the Earth. The authors presented several advantages of neutrino 
transmission as a message carrier: neutrino penetrability; the universal reception of 
neutrino signal from the full 4p spherical area; possibility of narrow foci of neutrino 
beams in order to improve chances of signal reception at great distances; and broad 
ranges of energies to select amongst. The same year, Subotowicz published on the use 

                                                        
3 In contrast to P.A.M. Dirac, E. Majorana proposed different types of fundamental particles with 
unanticipated concepts that revolutionized ideas of matter that composes the universe. Thus, particles 
such as neutrinos that have no charge, can be their own anti-particles, according to Majorana. [40] 
Accordingly, double beta decay experiments are underway, for which there should be the absence of 
neutrino detection – a matter for experiment and debate.    
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of neutrino beams for interstellar communications and included calculations for 10 and 
1,000 light year distances. [38, 47, 59, 69] 
 
In 1994, Learned, Pakvasa, and colleagues analyzed the problem of transmission of 
timed data across interstellar distances. Since photons do not measure up to the 
requirements for interstellar communication, synthetic non-natural neutrino pulses may 
be useful. Timing marker pulses are required for clock synchronization across distance 
and are more difficult for greater distances. This requires ultrasensitive brief standards 
of time intervals (standard pulses as narrow as 10-21 sec across interstellar distances. 
Synchronization methods are required due to (general and special) relativistic effects 
across such distances. Learned et al discuss an example of a 20 million light year 
distance for which the loss of precision would range from the order of  
10-14 to 10-23 sec year-1.  [37]  
 
Chaos factors in multiple body motions set the stage for refinement of clock 
synchronization methods. Learned et al point out that in the local frame, the best basis 
for synchronization at the time was the Josephson junction, which was stable to 3 parts 
in 10-19. The problem of relativistic corrections is significant, especially due to neutrino 
oscillation, speed, and masses. [35, 37] (Additionally, it may be pointed out that these 
evaluations do not include the possible effects of Dark Matter and Dark Energy.) 
 
Learned, Pakvasa, and Zee present their theoretical model for advance civilizations in 
which neutrino and anti-neutrino signals can be produced efficiently by Z0 bosons as 
follows:  e+e- à Z0 à n and anti-n   where Z0 mass is 91.1 GeV, En = MZ/2 = 45.6 GeV, 
the three flavors produced in equal numbers.  Anti-neutrinos can be detected by W- 
boson production as follows: anti-ne and e-à W- where Ee = Mw2/4En = 35.1 GeV. 
Various additional conditions are provided to then produce neutrinos and anti-neutrinos 
at a high pulse rate and to detect them. Clock calibration is based on neutrino vs. anti-
neutrino detection. However, timing of the transmitter neutrino vs. anti-neutrino must be 
known in order to calibrate the receiving clocks (with relativistic corrections across 10 
kpc).4 Next, relating current SETI (Search for Extraterrestrial Intelligence) technology to 
the Learned et al advanced technology, they point out that signals from the center of the 
galactic center would be undetectable; however, signals from a distance of 1 kpc would 
be possible with a 1 km3 effective water volume instrument.  It is further indicated that 
much work needs to be done in regard to discriminating signal from noise and signal 
direction.  
 
Learned et al further examined the intra-galactic neutrino basis of communication. They 
hypothesized that creation of neutrino and anti-neutrino beams, at resonant neutrino 
energies near 6.3 PeV (including the Z0 and W- resonances), were possible, and 
perhaps even at 30 PeV. They further stated that such beams could be detectable by 
current neutrino detectors. To enable encoding information for possible communication, 
Learned et al also proposed the feasibility of a ‘Morse code’ type signaling, which may 

                                                        
4 1kpc = 3,261.564 light-years. The diameter of the Milky Way is 30 kpcs. The distance from the Earth  to the 
galactic center is 8 kpcs.  
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surmount several physical and technological problems. Additionally, they pointed out 
that for communications within the galactic plane, photons can be readily obscured or 
perturbed: photon jitter and scattering decreases the signal/noise ratio of potential 
interstellar communications, and Einstein gravitational lensing, when asymmetric, will 
also contribute to clouding of any potential photon communication signals. [37, 38, 46] 
 
Neutrinos, be they Dirac or Majorana, may additionally be subject to signal alterations 
as they traverse Dark Matter tufts within or outside galaxies. Even more enveloping is 
the preponderance of Dark Energy, which may also contribute to perturbations of 
neutrino travel crisscrossing intergalactic distances. In particular, there is an abundance 
of theories in regard to Dark Energy and Dark Matter including how they may interact 
with Standard Model and Supersymmetry particles. Moreover, interactions with 
neutrinos (Dirac, Majorana, or sterile) require much further study to describe neutrino 
communications across large distances. [3, 4, 40, 52, 74]    
 
It should be noted that perhaps binary code signals are advantageous for 
communication for the widest possible range of audiences of sending and receiving 
signals at differing levels of extraterrestrial intelligence and technology. Moreover, 
perhaps flavor changes themselves, could someday be utilized to produce such binary 
signals (once the problems of dissipation are solved). The statistical approaches 
involved in handling entropies and signaling, range from Shannon’s more deterministic 
approach to Kolmogorov’s more intuitive approach. The influence of relativistic effects 
on such information/entropy and signal content requires further analysis to attempt to 
extricate information that may be embedded in various possible modes of neutrino 
signaling. Such considerations are needed, due to the large interstellar, let alone 
intergalactic distances, embodied in potential neutrino broadcasting. [5, 64, 65]      
 
With regard to SETI, Silagadze, in 2008, described an approach involving intense 
neutrino beams produced from muon colliders beams. They proposed that such beams 
at TeV power levels could be detected, if pointed at the Earth by advanced civilizations. 
The IceCube neutrino telescope would be an example of a detector in their proposal. 
The distance traversed by such neutrinos would be 20 light years and the duration to 
complete detection, at least a year. In support of the use of modified neutrino beams for 
signaling, in 2012, Stancil et al were able to detect modified neutrino signals using 
ground-based detection.  [67, 68] 
 
 
Harris in 2002, proposed that gamma-ray photons could be produced by machines 
powered by proton-antiproton annihilation. They analyzed data accumulated 1991-1995, 
in the relevant 30-928 MeV range from the EGRET experiment carried by the Compton 
Gamma Ray Observatory. Harris concluded that within 10 AU5 there is no evidence for 
antiproton-proton annihilation machine use. However, since neutrinos are produced in 
proton-antiproton annihilation, it should be noted that a similar systematic search for 
neutrinos rather than photons could be utilized.  [10, 13, 30, 31, 34, 37, 38, 47, 50, 59, 
67-69, 71, 73, 79] 
                                                        
5 10 AU = 1.5x109 km.  



 White Paper NAS: State of the Profession Considerations Shapshak 

7/4/19  7 

 
As mentioned, through his Majorana neutrino concept, Majorana thereby influenced 
how we may approach the problem of exobiological intelligent life. This is pivotal 
because it points to unanticipated forms of matter that may be intimately connected with 
the possible detection of extraterrestrial intelligence, let alone extraterrestrial 
communication. What appeared anomalous and counter-intuitive, such as a particle 
being its own anti-particle, may become part of the signatures of advanced civilizations. 
[40] 
 
Several particles and their possibly cognate supersymmetry particles are shown in 
Table 1. Table 2 shows several interactions among particles in the Standard Model.  
Indeed, several candidate particles have been discussed as present in Dark Matter 
including WIMPs and sterile neutrinos, whose interactions are under theoretical study to 
assist in experiments. Additionally, various theories are being developed as to the 
interactions of Supersymmetry particles. Such studies will be on firmer ground when 
any of the particles are identified. [1, 41, 53, 57] 
 
 
Table 1. Several selected particles and their corresponding supersymmetry particles, 
extending the Standard Model to the Minimal Supersymmetric Standard Model. [27, 51, 
61, 77] 
 
Particle Supersymmetry 

particle 
Gluon Gluino 
Neutral boson Neutralino 
Charged boson Chargino 
Gauge boson Gaugino 
Lepton  Slepton 
Quark Squark 
Neutrino Sneutrino 
Sterile neutrino Sterile sneutrino 
Majorana 
neutrino 

 

Majoron  
Higgs Higgsino 
Photon Photino 
Graviton Gravitino 
 Inflaton 
 Chameleon  

(Anti-particles are not shown.) 
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Table 2. Interactions of standard model particles.  [12] 
Particles & 
Interactions 

g 
photon 

W± 

bosons 
Z 
boson 

H 
Higgs boson 

G 
Gluon 

e- µ- t-  
charged leptons 

yes yes yes yes  

ne nm nt 
neutrinos 

 yes yes   

u c t  
d s b  
quarks 

yes yes yes yes yes 

H  yes yes   
W± yes  yes   
g  yes    

(Sterile neutrino and anti-particles are not shown.) 
 
 
5. Conclusion and Future Directions 
 
The field of production and detection of signaling by advanced civilizations is evolving 
from photon physics towards particle physics. Central are the greater penetrability and 
lower occlusion of neutrinos compared to photons in interstellar and intergalactic 
medium.  
 
In future publications, we will continue to study neutrinos in terms of the growing 
knowledge of their fundamental properties as well as what global cosmology has to 
elucidate for us. To assess their use for interstellar communications by advanced 
civilizations, these studies include neutrino masses, energies, relativistic effects, flavors, 
Dirac and Majorana, interactions with Standard Model and SuperSymmetry particles, as 
well as Dark Matter and Energy. Coming to grips with how advanced civilizations may 
utilize neutrinos for communication involves understanding both neutrinos and 
Cosmology. The problem in neutrinos and intergalactic communication is embedded 
within a highly complex global background. [22, 36, 40, 75, 76]  
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