
Support the Python Numerical Core 
Joseph Harrington, University of Central Florida, ​jh@physics.ucf.edu 
Ralf Gommers, Quansight, ​rgommers@quansight.com  
Chelle Gentemann, Earth and Space Research, ​cgentemann@esr.org  
Derek Buzasi, Florida Gulf Coast University, ​dbuzasi@fgcu.edu  
Kevin Stevenson, Space Telescope Science Institute, ​kbs@stsci.edu  
Joshua Pepper, Lehigh University, ​joshua.pepper@lehigh.edu 
Perry Greenfield, Space Telescope Science Institute, ​perry@stsci.edu 
Shubham Kanodia, Pennsylvania State University, ​szk381@psu.edu 
Thomas Beatty, University of Arizona, ​tgbeatty@email.arizona.edu 
Ryan Challener, University of Central Florida, ​rchallen@knights.ucf.edu  
Joe Ninan, Pennsylvania State University, ​jpn23@psu.edu  
Jessie Christiansen, Caltech/IPAC-NExScI, ​jessiec@caltech.edu  
Arif Solmaz, Çağ University, ​arifsolmaz@cag.edu.tr  
Erik Tollerud, Space Telescope Science Institute, ​etollerud@stsci.edu 
Nicholas Earl, Space Telescope Science Institute, ​nearl@stsci.edu 
Pey Lian Lim, Space Telescope Science Institute, ​lim@stsci.edu 
Larry Bradley, Space Telescope Science Institute,​ ​lbradley@stsci.edu 
Elisabeth Newton, Dartmouth College, ​Elisabeth.R.Newton@dartmouth.edu  
Rachel Akeson, Caltech/IPAC, ​rla@ipac.caltech.edu 
Megan Sosey, Space Telescope Science Institute, ​sosey@stsci.edu 
Philip Hodge, Space Telescope Science Institute, ​hodge@stsci.edu  
Paulo Miles-Páez, University of Western Ontario, ​ppaez@uwo.ca  
Kathleen Labrie, Gemini Observatory, ​klabrie@gemini.edu 
Henry Ngo, National Research Council of Canada, ​Henry.Ngo@nrc-cnrc.gc.ca  
Sara Ogaz, Space Telescope Science Institute, ​ogaz@stsci.edu 
Darren Williams, Penn State University, ​dmw145@psu.edu  
Michael Himes, University of Central Florida, ​mhimes@knights.ucf.edu 
Kathleen McIntyre, University of Central Florida, ​kmcintyre@knights.ucf.edu  
Adrienne Dove, University of Central Florida, ​adrienne.dove@ucf.edu  
Joshua Colwell, University of Central Florida, ​josh@ucf.edu  
Joe Llama, Lowell Observatory, ​joe.llama@lowell.edu  
Ryan T. Hamilton, Lowell Observatory, ​rhamilton@lowell.edu 
Geert Barentsen, Bay Area Environmental Research Institute, 
geert.barentsen@nasa.gov  
Ryan Terrien, Carleton College, rterrien@carleton.edu 
 

mailto:jh@physics.ucf.edu
mailto:rgommers@quansight.com
mailto:cgentemann@esr.org
mailto:dbuzasi@fgcu.edu
mailto:kbs@stsci.edu
mailto:joshua.pepper@lehigh.edu
mailto:perry@stsci.edu
mailto:szk381@psu.edu
mailto:tgbeatty@email.arizona.edu
mailto:rchallen@knights.ucf.edu
mailto:jpn23@psu.edu
mailto:jessiec@caltech.edu
mailto:arifsolmaz@cag.edu.tr
mailto:etollerud@stsci.edu
mailto:nearl@stsci.edu
mailto:lim@stsci.edu
mailto:Elisabeth.R.Newton@dartmouth.edu
mailto:sosey@stsci.edu
mailto:hodge@stsci.edu
mailto:ppaez@uwo.ca
mailto:klabrie@gemini.edu
mailto:Henry.Ngo@nrc-cnrc.gc.ca
mailto:ogaz@stsci.edu
mailto:dmw145@psu.edu
mailto:mhimes@knights.ucf.edu
mailto:kmcintyre@knights.ucf.edu
mailto:adove@ucf.edu
mailto:josh@ucf.edu
mailto:joe.llama@lowell.edu
mailto:rhamilton@lowell.edu
mailto:geert.barentsen@nasa.gov


Type of Activity: Infrastructure Activity 

Executive Summary and Recommendations 
Open-source software (OSS) promotes reproducibility and efficiency in science. The 
most popular OSS framework in astrophysics is the Python Numerical Core (PNC), 
including the NumPy, SciPy, Matplotlib, Pandas, and Scikit-learn packages. With over 
5,000,000 users, these projects have grown beyond the volunteer scale and require 
financial support. 

Open-Source Software in Science 
Much of the activity in Earth and space science involves crunching numbers on 
computers, whether in data analysis or theoretical modeling.  As calculation complexity 
has grown, so has the need to share codes rather than writing one’s own versions from 
scratch.  For example, few astronomers would think of rewriting the calibration pipeline 
of a facility telescope such as Hubble, and most users of general circulation models 
download one of the large, well maintained public codes rather than starting from 
scratch.  Those who do it from scratch typically do so as their career focus.  It is 
becoming recognized that scientific papers cannot adequately describe most data 
analyses or numerical models sufficiently to reproduce the numbers they report, that the 
code itself is the ultimate documentation of the calculation, and that therefore it must be 
disclosed to support scientific claims made from it (Fomel and Claerbout 2009, 
introduction to ​Computing in Science and Engineering​ special issue on Reproducible 
Research). 
 
Exchange of software is difficult if there are components that the recipient cannot run, 
for example, for lack of a license.  Educating students with proprietary software has the 
disadvantage that they may lose access to the tools they wrote when they leave school. 
Similarly, professionals changing jobs may leave behind their access to proprietary 
environments.  As OSS solutions respond directly to the needs of the user, not of 
shareholders or customers in other fields and with different priorities, they have 
matched or surpassed proprietary tools in essentially every measure, including 
efficiency, ease of use, documentation, user support, features, robustness, and 
language quality. 
 
Today, most new investigators learn with OSS tools, many existing projects are 
converting to OSS, and few projects move from OSS to proprietary software.  A recent 
National Academies study provides detail and numerous white papers supporting OSS 



in space science (National Academies of Science, Engineering, and Medicine 2018).  It 
calls on NASA to support both the basic OSS packages used in science as well as 
discipline-specific packages, such as astronomy’s AstroPy.  This paper outlines the 
case for the basic packages used in nearly all astrophysics-related research, and the 
need to fund them. 

The Python Numerical Core 
The most popular OSS platform for numerical computing, including astrophysics-related 
work, is the Python language and its Python Numerical Core (PNC).  Python was written 
as a general-purpose, high-level, object-oriented computing language.  It was designed 
for instruction as well as professional use, so it is highly consistent and quite simple; 
Python code is commonly ​shorter​ than the pseudocode found in textbooks.  Separating 
the numerical components from the base language has allowed numerical experts to 
design and maintain those packages.  There are many numerical packages, but the five 
most widely used are the PNC: 

● NumPy - the core array object and the most fundamental routines using it (e.g., 
trigonometry, random numbers, simple statistics) 

● SciPy - more advanced or specialized routines using the array object 
● Matplotlib - publication-quality 2D and basic 3D plotting and data visualization 

routines 
● Pandas - a framework for structured and unstructured statistical data analysis 
● Scikit-learn - machine-learning routines 

The web site uniting the numerical Python world is ​http://scipy.org/​ . 

Developing, Managing, and Funding the PNC 
 
Each of the PNC projects began and spent many years as a volunteer, “scratch your 
own itch” project.  Some beat stiff competition to gain a large following.  Some, such as 
NumPy, underwent forks, reunifications, and other gyrations before becoming the widely 
used packages that they are today.  Throughout, the developer communities have been 
drawn from and guided by the user community, through mailing-list discussions and 
multiple conferences annually, throughout the world. 
 
Today, each package has hundreds of contributors, with many dozens active at any 
given time.  A core group of about ten developers per package are the gatekeepers to 
the sources, with commit rights.  There is formalized governance for major decisions. 
Some packages have a leader, with ultimate authority and the understanding that it will 

http://scipy.org/


not be used except to break a consensus deadlock, which is rare; others have a small 
consensus council.  There are detailed roadmaps and planning processes, codes of 
conduct, deep commitments to testing and documentation, and carefully controlled 
release cycles.  Changes come slowly, after careful consideration and long, open 
testing periods.  Backward-incompatible changes are extremely rare and well heralded 
through a years-long deprecation process.  This makes the software very reliable and 
stable. 
 
The PNC has had a remarkable uptick in use.  Statistics from the GitHub repository put 
the number of projects with files saying “import numpy” at over 220,000.  Many of these 
are astrophysics repositories, but we believe that most astrophysics codes are not on 
GitHub.  Nearly all high-profile astrophysics projects use the PNC for at least some of 
their code, and many use it for all their code.  These include the LSST, HST, and JWST 
calibration pipelines, as well as numerous probe data pipelines.  Essentially all 
discipline-specific packages, including AstroPy, depend fundamentally on the PNC 
packages, and especially NumPy. 
 
The uptick in users has stressed the volunteer community nearly to the breaking point. 
Each volunteer chooses what to work on, making it difficult to get boring or low-credit 
tasks done.  Such tasks are often critical to users, such as rolling releases, maintaining 
documentation, answering user questions, maintaining servers, writing tests, porting the 
software to new hardware, optimizing it for new hardware, managing volunteers, and 
raising funds and awareness.  This work totals about ten full-time equivalent (FTE) 
employees per project, at this point.  Most critical is directing all the work.  Much of the 
work is highly technical, requiring experienced software engineers or 
numerical-computing-hardware specialists who are not themselves scientists.  Many 
projects are difficult to split into tasks small enough to spread among many part-time 
volunteers. 
 
To solve these issues, community leaders formed NumFOCUS, a US non-profit that 
raises funds for member projects and hires developers and others to work on them. 
NumFOCUS has the legal and financial management team to handle gifts, grants, and 
contracts.  The PNC projects are all members of NumFOCUS, meaning they have 
made certain governance and management commitments to ensure community control 
and maintain non-profit status. 



Funding Efforts to Date 
NumFOCUS is successful only to the extent of the funds it raises.  The PNC user 
community is huge, spanning corporations, non-profit think-tanks, universities, schools, 
government, and private users worldwide.  However, the nature of OSS is that there is 
no obligation to pay, and people seldom do.  The first to step up have been companies, 
including some founded by PNC leaders and early developers, that use Python to 
deliver custom software or to analyze data, generally in the commercial world.  It is 
difficult to assess the fraction of use due to astrophysics, but we do know that the PNC 
underpins a substantial fraction of NASA’s and NSF’s productivity.  If the packages 
were commercial software bearing license fees comparable to commercial offerings in 
this space, the income generated would be in the tens of millions of dollars from 
astrophysics alone, as a commercial software site license for a NASA center is many 
hundreds of thousand of dollars. 
 
There are infrastructure software development programs at NSF, and we have applied 
to these.  After all, it would disrupt science if the PNC were abandoned as 
unmaintainable.  However, these programs are for one-time development of new 
software, not for maintaining existing capability.  Our proposal was not considered very 
exciting, and in fact it isn’t.  Volunteers are eager to do the exciting parts of 
maintenance.  It is the boring-but-necessary tasks for which we seek funds. 

Request 
It would not be fair to ask NASA and NSF to fund all of the PNC’s needs.  There is 
growing commercial use, as well as use in other scientific communities.  At the same 
time, someone needs to step up and make a meaningful financial commitment, or the 
future of the PNC as maintainable software is in doubt.  We feel that 10% of the total 
need is a fair request for US astronomy sources (i.e., NASA Earth and Space Science 
and NSF Astronomy and Astrophysics).  This is just for the PNC.  Funding astronomical 
tools, such as AstroPy, is important, but separate. 
 
With five projects and ten FTE per project, the request comes to 50 FTE.  At an average 
senior developer salary of $120,000, this is $6M annually, plus burdens and expenses 
(conferences, servers, etc.).  NASA’s share would be ~$1-2M/year, in very rough 
numbers.  This is a very small cost for NASA, more substantial for NSF, but easily 
carried by both, given the scope of their operations and the benefit to the community.  A 
fair split between the two could go according to the sizes of their research and analysis 



programs.  Additional contributions should also come from NASA’s non-science 
components and non-astronomy programs at NSF. 
 
There are several mechanisms that could be used.  The simplest would simply be a 
contract with NumFOCUS, renewed annually, with the deliverable being a report on 
activities and the penetration of the software.  A more market-based approach would be 
to require grant recipients using primarily OSS solutions to identify what they used, and 
to allocate the equivalent of a few individual commercial software licenses per grant to 
those projects.  We strongly suspect this would represent much more money, and it 
would be more fair, ensuring all relevant projects received support.  However, it would 
be a major administrative and bookkeeping headache for all concerned. 
 
Regardless of how it is done, funding the PNC is critical.  Thousands of NASA- and 
NSF-funded research projects depend on it.  Major NASA facilities and missions 
depend on it.  Numerous courses at colleges and universities, and even some high 
schools, use it.  As the number of users shoots past the five million mark, managing the 
hundreds of volunteer contributors, supporting the community, and maintaining the core 
activities and infrastructure can only be done by full-time, paid professionals.  If we do 
not fund the PNC, the software will stagnate and grow unmanageable.  Documentation 
will go out of date, new hardware will not be supported, and servers not be consistently 
available.  The quality and frequency of releases will not be able to be maintained.  User 
questions will not be answered.  This will happen slowly, and as users find that the PNC 
does not meet their needs, they will switch to alternatives.  Switching a large toolset to 
another language can take years.  Finding those alternatives not quite up to par, they 
will sink time into them, further reducing their efficiency.  The large number of 
alternatives will dilute effort, ensuring that none of them becomes what the PNC is now. 
It will be more difficult to share software if it is not based on a widely accepted 
foundation like the PNC. 
 
We have already spent the effort to build the PNC past the equivalent commercial 
offerings.  Making and keeping it available to a large and fast-growing user base is a 
different story.  It is a worthy project, critical to NASA and NSF.  We ask that Astro2020 
specifically call out the PNC for support at the ~$1-2M level annually. 

References 
National Academies of Science, Engineering, and Medicine 2018.  ​Open Source 
Software Policy Options for NASA Earth and Space Sciences. ​National Academies 
Press. ​https://www.nap.edu/read/25217  

https://www.nap.edu/read/25217
https://www.nap.edu/read/25217
https://www.nap.edu/read/25217


 
Fomel, S., and J. Claerbout 2009.  Reproducible Research in ​Computing in Science & 
Engineering​ 11, 5.  Introduction to special issue on Reproducible Research. 
https://doi.org/10.1109/MCSE.2009.14  
 

https://doi.org/10.1109/MCSE.2009.14

