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1. Science goals & objectives
1.1 Astrophysics in the 2020’s

The goal of the probe-class mission concept called “Cosmic Evolution Through UV Surveys”
(CETUS) is to serve as the scientific community as a worthy successor to Hubble!, GALEX?,
and UVOT?. CETUS is planned to be operational at a time when there will be no other opera-
tional UV capability in the US space science fleet. CETUS will constitute a major advance over
these older missions because it can take advantage of new opportunities as described below:

Golden era of surveys. In the 2020’s, current and future wide-deep telescopes will be surveying

the sky at wavelengths ranging from gamma rays to radio
waves. Survey telescopes operational in the 2020’s include E-
ROSITA* (X-ray), Subaru’s Prime Focus Spectrograph’® (PFS)
and the VLT s MOONS® spectrograph (optical-near-IR), the
Large Synoptic Survey Telescope’ (LSST; optical), EUCLID?,
the Wide-field Infrared Survey Telescope’ (WFIRST), the
Large Millimeter Telescope'® (LMT), the Square Kilometer Ar-
ray'! and other radio telescopes!?. CETUS will fill the UV hole
in this panchromatic set of survey telescopes. Together, they
will be synergistic, probing, for example, the Lyo/Ha/21-cm
connection, or the IRX (UV/IR luminosity ratio)

High-resolution simulations. Simulations are needed to un-
derstand galaxy evolution over cosmic time. Cosmological sim-
ulations such as FIRE-2"? (Fig. 1-1 left column), Illustris-
TNG!4, and EAGLE'S are already generating realistic physical
models of galaxies with resolutions as high as 25 pc. Post-pro-
cessing these simulations with the dust radiation-transfer code,
SKIRT'® produces predictions of observed morphologies!” (Fig.
1-1 right) and wide-baseline SED’s. CETUS UV observations
will play an important role in checking the results of simula-
tions and informing simulations about basic processes such as
kinetic feedback from black-holes and dust-induced attenua-
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Figure 1-1. Fire-2/SKIRT Simulation
of a galaxy at z=2.95. From
Cochrane, Hayward et al. (2019)

tion/IR re-emission, which presently are not well constrained by observation.

Advanced technologies. Except for the microshutter array'® (NG-MSA), new technologies
needed by CETUS are ready now -- from low-scatter gratings'® to larger and better detectors?’, to
telescope mirrors better than Hubble’s?!, and mirror coatings enabling probes deeper into the far-

UV while providing protection against degradation??.

1.2 The CETUS mission concept

CETUS is a 1.5-m, f/5 wide-field telescope in orbit about Sun-Earth L2. In the course of study,
the CETUS mission concept has gained unique capabilities that enable new scientific programs
that were out of reach of Hubble, GALEX, and UVOT. They include:
A telescope better than Hubble. Thanks to advances in mirror polishing, CETUS spectra
will not suffer from systematic mid-spatial frequency wavefront errors that plague Hubble far-
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UV (FUV) spectra®!. These errors produce extensive wings of the line-spread function, which are
at the level of 1-2% of the continuum but contain as much as 40% of the line strength at far-UV
wavelengths. A 40% deficit in the O VI line strengths is on the scale of the missing baryons at
low redshift. We expect that CETUS will make an accurate inventory of baryons in the warm-hot
circumgalactic medium and find or confirm missing baryons at low redshift. Cf. Oppenheimer et
al. #309.

Sensitivity to low surface-brightness sources. With its f/5 focal ratio, CETUS is 23
times more sensitive to low surface-brightness sources than is Hubble. This sensitivity will be
put to good use in observing diffuse sources such as the circumgalactic medium (CGM) or intra-
cluster medium as recomentded by Burchett #591.

Probe of extended sources. By design?’, the FUV spectrograph can obtain R~20,000 spec-
tra over the wavelength range, 1000-1800 A and accommodate a 6’-long slit. Thus, CETUS
spectra can follow changes along the slit in ionization level, metallicity, velocity, etc. of low-
mass galaxies like M 82 to massive galaxies like M 87 in all phases: cool (Lya, C II 1335), warm
(S11V 1393), warm-hot (O VI 1032, 1038), and hot ([Fe XXI] 1354) as recommended by several
science white papers including Chen #366, Burchett #591, Martin #565, Oppenheimer #309.

Sensitivity in the deep far-UV. Thanks to advances in optical coatings*’, CETUS will be
sensitive at wavelengths as short as 1,000 A, thereby including O VI 1032, 1038, the only diag-
nostic of warm-hot gas (WHIM) in the circumgalactic medium (CGM). CETUS will make a ma-
jor study of the CGM surrounding nearby galaxies, especially dwarf galaxies that were out of
reach of Hubble, and it will correlate the properties of the CGM with the properties of the parent
galaxy. Spectroscopy of the WHIM is called for in white papers by Tumlinson #421, Peeples
#409, Lehner #524.

Restframe-FUV spectroscopy of z~ 1 galaxies. Using a multi-object spectrograph
(MOS) with microshutter array (MSA) like the one in JWST to block unwanted background and
eliminate confusion with nearby sources, CETUS will survey the near-UV (rest-UV) spectra of
>10* z~1 galaxies. These UV spectra will be joined with optical/near-IR spectra from Subaru’s
Prime Focus Spectrograph (or ESO’s MOONS) to create a continuous spectrum covering 0.2-1.3
pm (Heap 2016). This combination of spectra yields the physical properties, history of of star
formation in galaxies, and feedback processes currently operating in these galaxies.

Rapid response to transient events. Spurred by the merger of the neutron-star binary,
GW170817, followed by the emergence of a UV-bright kilonova, we added rapid-response capa-
bilities to CETUS (see Table 1-2). With 25X the light-gathering power of Swift UV-optical tele-
scope (UVOT) and its rapid response capabilities, the CETUS camera will measure the light
curve of a UV-bright kilonova 200 Mpc away. Such capabilities are implicitly called for by white
papers by Metzger #342 and Grindlay #607.

Investigation of fundamental physical processes. The combination of a wide field
fully encompassing a nearby galaxy, full FUV spectral coverage of 1,000-1,800 A, and FUV
long-slit spatial coverage of 6 (e.g. 18 kpc at 10 Mpc) makes it possible for CETUS to carry out
a detailed, quantitative study of nearby galaxies and clusters at high resolution (e.g. 27 pc at 10
Mpc). Combined with simulations of comparable resolution and observations made in other
spectral regions, CETUS will investigate fundamental processes like star formation and quench-
ing in galaxies including the role of the CGM.
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Highly efficient observations. Each of the two wide-field instruments on CETUS — the
NUV MOS and far-UV/near-UV camera — has a mechanism that enables dithering while holding
the telescope pointing steady, so that MOS and camera can obtain useful observations in parallel
with the prime instrument, thereby doubling or more the observing efficiency.

1.3 Basic parameters of the CETUS science instruments

The overall goal of CETUS is to provide the astronomical community with a UV space tele-
scope for the 2020’s providing the most useful and reliable UV spectroscopic and imaging capa-
bilities. The as-designed capabilities of CETUS shown in Table 1-1 are its essential performance
parameters. In all cases, there is a requirement for a 1.5-m telescope.

Table 1-1. Capabilities of CETUS Science Instruments

Instrument Wavelengths Field of View/Resolution* Observing Modes
Camera 1150-1800 A 17.4’x17.4’ /Res=0.55" 5 nested, long-pass filters + 1 as
yet unassigned
1800-4000 A 17.4’x17.4’ /Res=0.40" 5 contiguous filters + 1 as yet
unassigned
MOS 1800-3500 A 17.4’x17.4’ /Res=0.40” /RP~1,000 Open 2.75”x5.5” shutters at
Multi-object selected x,y positions
spectrograph 2.757x17.4’ /Res=0.40" Open shutters in y-columns at
selected x positions
PSS 1000-1400 A 27x2” /RP~20,000 point source Grating G120M
Point/slit 27x360”  /RP~2,000 extended source «
spectrograph | 1000-1800 A 27x2” /RP~2,000 point source Grating G140L
27x360” /RP~ 200 extended source “
1800-3500 A 0.5”x0.5” /RP~40,000 point source Echelle grating, E270M

*Res=resolution; RP=spectral resolving power, A/AA; grating nomenclature gives
central wavelength in nm and resolution (L, M, H)

1.4 Key observables — objects and distributions

CETUS will observe new, previously unobserved classes of objects such as the Lyman-a sky
or z~1 galaxies too faint for UV spectroscopy one by one. CETUS will also observe familiar ob-
jects but seen in a new way. New observing modes on CETUS include:

e multi-object slit spectroscopy,

e Jlong-slit spectroscopy (FUV: 27x6’, NUV: 27x17.4°),

e spectroscopy of the Lyman-UV (100-115 nm) spectral region,
e prompt-response observations of transients, and

e detection of low-surface brightness objects.

CETUS observables and their specific performance requirements on CETUS instruments and
spacecraft are summarized in Table 1-2. The summary suggests that we may have just scratched
the surface. Surely, new observers will think of other uses of CETUS.
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2. Technical Overview

2.1 Elements of the CETUS Architecture

Orbit. The observatory will operate in a L2 halo orbit with a <85° solar keep-out angle.

Telescope. The 1.5-m primary mirror assembly and all optics will use mature, high-TRL sub-
strates and optical fabrication methods resulting in much better control over mid-spatial fre-
quencies than does Hubble and producing substantially better (gaussian) line-spread func-
tions than achieved by Hubble’s COS and STIS instruments.

Science Instruments. Each of the three instruments -- camera, a point/slit spectrograph (PSS),
and multi-object spectrograph (MOS) -- has its own aperture at the telescope focal plane, and
each functions independently (with the exception that the prime instrument controls the tele-
scope pointing and roll angle). Each instrument can be removed or inserted into the instru-
ment bay without disturbing the others. Together, the instruments are managed under a single
governing ICD and make use of commonality of detectors (CCDs and MCPs), thus having
similar electronics, packaging, drivers and software. Commonalities of Offner relays and de-
vices in the camera and MOS are recognized.

Maximization of Optical Efficiency. To maximize UV transmission, the number of optics in
the optical path is minimized. AI/LiF/ALD AlF; coatings on telescope and PSS mirrors give
unparalleled transmission in the Lyman-UV (100-115 nm).

Thermal Stability and Control. Thermally critical opto-mechanical components will be main-
tained between 280K and 300K. The observatory will be stable enough against thermal tran-
sients that it can be slewed anywhere in the anti-sun hemisphere in 15 minutes and be ready
to observe. To protect the optics from contamination, all mirror and window surfaces will be
biased slightly warmer than surrounding structures and can be elevated in temperature for pe-
riodic redistribution of any contamination.

Hardware Implementation. Key contributors bring heritage-hardware experience to CETUS
and access to facilities of appropriate cleanliness and capacity. The CETUS team has carried
out design-to-cost methods including addressing the choice of “better” vs. “good enough.”

Potential for Exo-Planet Observations. The APC white paper on by Lisman et al. notes that
CETUS might be the participating telescope for the Occulting Ozone Observatory (O3). In
fact, the CETUS architecture can be made “starshade ready”. While this possibility has not
yet been specifically studied, there is no aspect of the current CETUS architecture that pre-
vents it from participation in a starshade mission, albeit with some increase in cost.
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2.2 Technology Drivers

Critical technologies for the MOS and the NUV/FUV Camera are listed in Table 2-1. The
Next-Generation Microshutter Array (MSA) is the key technology for further development that
is proceeding at GSFC with several design improvements and scale-ups already demonstrated
and further array fabrication optimizations being addressed in a current 3-year SAT. Should this
not be matured in time, the TRL 8 JWST NIRSpec MSA will be utilized.

Table 2-1 CETUS optical technologies are mature or will be advanced to meet

CETUS schedule requirements

Technology

Heritage/ Comments

Next-Generation Micro-
Shutter array for CETUS: a
~JWST-size NG-MSA
with 380x190 shutters with
100x200 pm rectangular
shutters

e The JWST NIRSpec MSA was space qualified with 365x172 array with
100x200 pm shutters, which makes it TRL 8. This MSA can be an off-ramp if
the NGMSA is not TRL 5 at the start of Phase A (1 October 2023).

e As part of an APRA program, a NG-MSA pilot 128x64 array was constructed,
so the current TRL is 3-4. A NASA/JHU sounding rocket experiment with this
NG-MSA is planned for the summer of 2019.

e  GSFC currently has a 3-year SAT grant for developing a 840x420 array for
LUVOIR and HabEx, which CETUS can accommodate, and for maturing this
larger NG-MSA to TRL 5 by 31 December 2021.

Large micro-channel plate
(MCP) detector with high
quantum efficiency in the
FUV

The CETUS far-UV MCP detectors made by U.C. Berkeley Space Science Lab

uses the same technology as flown on the Hubble COS spectrograph.

e CETUS FUV Camera MCP uses Csl photocathode (~50x50mm) with MgF2
window — TRL 6+

e CETUS PSS FUV MCP uses a large Csl photocathode (200x70 mm) window-
less as did the Hubble COS spectrograph. A 200x200-mm MCP has recently
flown on a University of Colorado rocket experiment. Sounding rocket pro-
grams e.g. CU’s DEUCE (2017, 2018) and NASA/JHU’s planned July 2019
36.352 UG. continue to provide verification of comparable MCPs.

Mirror coatings for high
UV-reflectivity down to
1,000 A

UV mirror-coating technology has greatly improved in the past decade. Hot-depo-
sition of AI/LiF coatings increase UV reflectivity?, and a thin overcoating of AlF3
laid down by atomic-layer deposition (ALD) protects LiF from humidity?. A 3-
way partnership among Colorado University, Goddard (hot deposition), and JPL
(ALD) has been successful in producing highly reflective mirrors for UV rocket
payloads. This arrangement would work well for all CETUS mirrors except for the
1.5-m telescope primary, which is too big for current facilities. Collins is planning
for large coating chamber, which might be modified to apply ALD coating on CE-
TUS OTA PM, but we also want to identify a facility that could work closely with
JPL, which is highly experienced in ALD coatings.

Optics in instruments requiring NUV & FUV coatings - Materion (Barr) and
ZeCoat are proficient in making special multi-layer UV coatings at these wave-
lengths, and applicable coatings have been demonstrated on small samples. Facili-
ties exist for coating CETUS-size optics.
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3. Technical Resources and Margins: Mass, Power, and Data

Volume

CETUS Mass and Power

NORTHROP GRUMMAN

Mass | Msn Mode | Slew Mode | Comm Mode
Subsystem Comment

(kg) | Power (W) | Power (W) | Power (W)

Spacecraft
Structure and OSSA 502 5387 587 587|19% of LV capability and 0S84 he ating
ACS 73] 169 443 169[6x HR14- 50
EPS 167 165] 165 165(Used JPSS- 2Battery 2¢ 134 Ahr (re dundant)
C&DH 44 115 115 11S[IEM and PIE w/mem ory
Propul sion 50) 4 4 4| 4x tanks and 16x thrusters
Thermal 38| 200 200 200[32% of SC
Comm 46 20) 20 158[42 Mbpswith HGA (Sdcm)
Harne ss 150 0 0 0]12% f SC
SCCBE 1070, 1260 1534 1399
SCContingency 178 159 230 210|16% mass and 15% power
SCDry Mass Total 1245 1449 1764 1609
CETUS Payload

Payload CBE 95 614 614 614
Payload Contige noy 29 134 184 184|302 mass and 30% power contingency
Payload Total 1164 795 795 798
Observatory Dry Mass 212 2247 2562 2407
Fuel 24 10vears of life
Observatory Vet Mass 2636
LY capability 3375
Margin 739
Margin 22%) 35%|Margin with all continge noy and margin

The data volume generated is 26 Gbits per day if two instruments are operational. The total data

volume downlinked to ground over the 5-year primary mission is ~ 50 Terrabits.

4. Launch requirements and launch vehicle

We initially had selected SpaceX’s Falcon 9 as the launch vehicle for CETUS. However, as
shown in Table 3-1 above, the mass margin (22%) is too small for a Class-B mission concept at
such an early phase of development. We have consequently budgeted for a Falcon 9 Heavy as
shown in Table 7-1.
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5. Organization, Partnerships, and Current Status

Figure 5-1 (left) shows the current CETUS organization with identification of partners who
have helped to formulate essential mission parameters and derive engineering requirements, sys-
tem architecture, and detailed designs as well as provide cost inputs. The right portion of Figure

5-1 shows the planned post-launch organization of CETUS.

NASA
Center

CETUS Prime Contractor
Northrop Grumman Corp. [«
PM: Dr. J. Arenberg

e

CETUS Science Community

PS: Dr. S. Heap, UMD

CETUS Core

Architecture Team

Space-X (NGIS Gilbert)

Launch Services S/C Development P/L Development: AOS, CU LASP,
Collins/Harris, NGIS SD

|
P/L Structure/

@AOS, CU LASP, NGC

P/L El/Opt P/L Optics & S/W
e2v, SSL; AOS, Collins, Harris, Baffles/
MSA from ZeCoat, ZEISS Thermal
GS‘FC CuU IIASP NGI‘S SD
\
P/L AI&T,

Observatory/Faring
Integration by NGC

Observatory AI&T @ NGC }—‘

CETUS Top-Level Organization
Pre-Phase A (left) & Post-launch (right)

CETUS Observatory

| cetusmoc |
NGIS Reston

i v

SOC @PSU
Planning & Level 1,2
Scheduling Processing

v

Level 3 Processing
Meas & Catalog
(TBD)

r ¥

CETUS Science Archive CTR
Community @JHU

Figure 5-1. The CETUS organization provides science, engineering, and management
expertise to achieve successful CETUS development and mission operations.

Over the past 40 years, UK and European institutions have worked closely with NASA on de-
veloping and observing on UV astrophysics missions such as the International Ultraviolet Ex-
plorer (IUE) and the Hubble Space Telescope (HST) in partnership with NASA. There is still
keen European interest in UV astrophysics today. Of the 26 UV-related science white papers
submitted to Astro2020, about a third were from Europeans. In addition, Neiner (WP #244) has
submitted a proposal to CNES to study adding a polarimeter to the CETUS NUV spectrograph.
In the coming months, we plan to explore partnerships on CETUS with European institutions.
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6. Schedule

Figure 6-1 shows the projected schedule for development of the CETUS mission. It assumes a
Phase A start in October 2023 and a launch in August 2029. Operations are planned for a 5-year
mission, but consumables are planned to allow a 10-year mission. Continued technology devel-
opment of areas discussed in Section 2.2 prior to 2023 are fundamental.

PHASE A PHASE B
Starts Start PDR CDR
10/1/2023 4/1/2024 12/1/2024 12/1/2025,
Phase A - . .
: Phase C-1Desig z
Requirements y Phase B Dfinition/Design Y e o l ll;l:t?rslifujn 1}3—;73]2
A“a‘y;}S 1 System Prelim. Final Design S/C & P/L S/CHW Funded
1nal

Definition Design

Schedule
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Definition

]
Long lead procurement OTA
mirror assemblies, detectors,

Pre-Phase A
Studies/Trades

MSA, etc.
< 6mo. >« 6 mo. w———— 8§ months ————><— 12 months ———> < 14 months — >+ 3 months >
PHASE D-1 starts PSR Ship LAUNCH PHASE E Extended Ops End
§/1/2027 1/1/2029 4/1/2029 8/1/2029 10/1/2029 |10/1/2034 10/1/2039
Phase D-1 P/L & System Assembly,
Y Integration & Test plus Environmentals A E]_JIASE [\ 1
S/C AI&T @ NGIS 1 Funded Launch Primary Exteneded
Sched Transit Operations Operations
ARTPL0 N\ et ©L2
Assy@ AQ
) m I
“3mo ™ 4mo — *>* 2mo — ><«——— 60-120 months ———

AOS;‘/

« 20 months —”

Figure 6-1. The CETUS schedule defines a realistic mission timeline for the 1.5-m telescope,
scientific instruments, spacecraft, and AI&T at high-cleanliness UV-compatible facilities. It rec-

ognizes the efficiencies of expert and experienced industrial and academic facilities and allows
funded schedule margin.

After our industrial and university partners vetted this schedule, we used this schedule, indus-

try-norm labor rates and FTE loading to generate a cost estimate for CETUS as described in Sec-
tion 7.
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7. Cost Estimate

Table 7-1 The cost of a CETUS 5-year mission is within the range of a Probe-class

Phase A-D Cost
WBS # Estimate Notes
1.0-3.0 | Management, SE, MA $60 M
Includes: monitoring CETUS hardware development;
building/modifying s/w for levels 1,2,3 science data pro-
cessing & s/w for measurement & on-line catalogs ;
4.0 Science Preparation $8 M participation in pre-launch test and calibration
Based on industrial & institutional input from NGIS
(Gilbert), NGIS (San Diego), Collins Aerospace, Harris
Aerospace, SCHOTT, LASP (CU), Teledyne-e2v, JPL,
Payload (Instruments, GSFC, AOS, NGC. Multiple telescope cost models were
5.0 Telescope) $395M used to derive the telescope cost estimate.
NGIS (Gilbert) based on significant TESS similaraties
6.0 Spacecraft $164 M and TRL 7-9 hardware
Observatory
10.0 I&T(ATLO) $20 M NGIS (Gilbert)
30% Reserve Phase A-D $194 M
WBS # Phase E
1.0 - 3.0 | Management, SE, MA $2.4M
Includes: planning & scheduling, post-observation data
processing at Penn State Univ; archival & analysis cen-
4.0 Science $30.0 M ter at JHU; measurements & catalogs by TBD
NGIS (Gilbert); 5 yrs mission baseline; consumables for
7.0 Mission Operations $15.0 M 10 yrs
9.0 Ground Data Systems $2.5M
15% Reserve Phase E $7.5M
Subtotal before Launch
Vehicle 3898 M
Space X Falcon 9 baselined in initial study, but to gain
mass margin, we adopt the Falcon 9 Heavy ($90M plus
Launch Vehicle/ Launch $20M for launch services)
Services $110 M https://www.spacex.com/about/capabilities
15% Reserve on Launch
Vehicle $16.5M
CETUS Total Cost $1,025M

CETUS costs have been derived from industry/university input following significant design ef-
fort. High-heritage, high TRL components have been used throughout. Industrial partners have
been selected with the approach “go to the experts,” and each has well-established expertise in
its area of engagement. This table includes all costs that will be funded by NASA. Direct
funding to the science community is described in WBS 4 for both pre-launch (Phase A-D) and
post-launch (Phase E) periods.
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