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Abstract:
Despite two decades of tremendous experimental and theoretical progress, the riddle of the
accelerated expansion of the Universe remains to be solved. On the experimental side, our
understanding of the possibilities and limitations of the major dark energy probes has evolved;
here we summarize the major probes and their crucial challenges. On the theoretical side, the
taxonomy of explanations for the accelerated expansion rate is better understood, providing clear
guidance to the relevant observables. We argue that: i) improving statistical precision and
systematic control by taking more data, supporting research efforts to address crucial challenges
for each probe, using complementary methods, and relying on cross-correlations is well
motivated; ii) blinding of analyses is difficult but ever more important; iii) studies of dark energy
and modified gravity are related; and iv) it is crucial that R&D for a vibrant dark energy program
in the 2030s be started now by supporting studies and technical R&D that will allow embryonic
proposals to mature. Understanding dark energy, arguably the biggest unsolved mystery in both
fundamental particle physics and cosmology, will remain one of the focal points of cosmology in
the forthcoming decade.
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1 Introduction
Twenty years since the discovery of cosmic acceleration, the laws of physics on the largest scales
remain an enigma. The phenomenon continues to drive us to consider bold transformations in our
understanding of cosmic forces. Broadly speaking, theories of dark energy fall into three major
classes. The first and simplest class is the cosmological constant, which fits all the available data
but which is theoretically unsatisfactory because it is fine-tuned and sensitive to the UV
completion of gravity. This implies that any fundamental theory that could give rise to a stable
value must have some new physics associated with it [1, 2].

The second class of models includes quintessence-type theories where dark energy is a
component with novel properties, typically explained in terms of a scalar field. These models of
dark energy are the simplest dynamical models of dark energy and are a low-redshift equivalent of
inflation [3]. They have recently been discussed within a somewhat controversial debate about the
swampland conjecture, which states that theories that can produce a slowly rolling w ' −1
universe like the one we observe do not have consistent UV completions within string theory
( [4], but see also [5]). This conjecture severely constrains the space of string-theory compatible
models [6, 7].

The third class of models includes modified-gravity theories in which cosmic acceleration is
caused by some extension of the gravitational sector. These theories have been significantly
constrained after the discovery of gravitational wave source GW170817 for which the optical
counterpart has been discovered, which constrained the speed of tensor mode propagation ct = c
with a fractional accuracy of 10−15. Nevertheless, there are significant caveats: i) the cosmic
acceleration and the LIGO event are separated by twenty orders of magnitude in energy scales
and the effective theories can be very different [8], and ii) modified-gravity theories can predict
significant time dependence, so a single event cannot completely constrain the underlying
physics. Significant parts of parameter space thus remain open. Finally, there are somewhat more
exotic theoretical paths towards generating accelerated expansion, like novel coupling between
baryons and dark matter [9] or involving neutrino physics [10, 11].

The main observables that will help us distinguish between these scenarios are the precise
characterization of the expansion history, the gravitational slip (η = Φ/Ψ, where Φ and Ψ are
gravitational potentials in the time and space perturbations of the metric) and the effective
large-scale Newton’s constant Geff [12]. Both η and Geff are unity in the standard GR, but can be
time- and scale-dependent quantities in modified-gravity theories. This has led to renewed interest
in measuring the growth of structure and the combination of datasets with the explicit purpose of
constraining these two parameters [13–20]

Faced with this compelling mystery, astrophysicists have mounted an ambitious multi-faceted
campaign to study the behavior of the Universe on the large scales. This program has been
undeniably successful: data quality has improved radically over the past decade, with new leaps
expected early in the 2020s from the upcoming facilities. There have been major improvements in
parameter constraints: for a simple equation of state w(z) = p/ρc2, we have measured a constant
w to be consistent with the cosmological constant (w = −1) to about ±0.05. And while there is
consistency in many aspects of the results, there are also active disagreements in other parts, such
as the value of the Hubble constant and perhaps the amplitude of late-time matter
clustering [21–26].
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2 Entering the decade of precision dark energy science
There is a rich portfolio of observational methods that we expect will drive the study of cosmic
acceleration in the coming decade. We stress that the whole is more than the sum of the parts. The
methods reinforce each other both in terms of statistical leverage and control of systematic
uncertainties. Cross-correlations and data combination have emerged as indispensable tools for
both controlling systematic uncertainties and isolating particularly informative aspects of
theories. During this decade, use of blinded analysis has become the norm for most measurements
of cosmic acceleration, so as to avoid confirmation bias; developing methods for blinded analysis
that will work for surveys at the next level of precision will be important as the field moves
forward. For all of these methods, marginalizing over systematic uncertainties has resulted in
expanded parameter spaces, and the field continues to work on building and validating models for
major systematic uncertainties that will work at the level needed for upcoming surveys.

There are two main classes of methods to study dark energy. The first measures the expansion
history, particularly through the study of the distance-redshift relation. The second class measures
the growth of matter density fluctuations, which is impacted by the large-scale gravitational
forces. Because dark energy is typically smooth, it slows the growth of fluctuations and decreases
the number of dark matter halos of a given mass. However, growth measurements offer more than
an increase in statistical precision; they provide an important consistency check. In a broad class
of quintessence theories, the expansion history predicts the behavior of the growth of fluctuations,
so any evidence for inconsistency there would necessarily imply some non-standard physics in
the gravitational sector.

We now briefly summarize what we see as the major methods for the coming decade.

Expansion history
Baryonic Acoustic Oscillations (BAOs): Description: The BAO peak is a feature in the
correlation function of a tracer of large-scale structure, acting as a standard ruler and thus
allowing measurements of distances and expansion rates as a function of redshift. Status:
Numerous experiments have measured BAOs with high precision in the past decade, including
2dFGRS, 6dFGS, WiggleZ, SDSS II, BOSS and eBOSS, using both galaxies and the Lyman-α
forest as tracers. In the 2020s, DESI, PFS, and Euclid will carry out high precision galaxy BAO
measurements to z ∼ 2 with DESI Lyman-α, HETDEX, and WFIRST galaxy surveys reaching
z ∼ 3. Future challenges: The main future challenge lies in obtaining sufficiently large
spectroscopic samples at ever increasing volumes. At redshifts beyond 2, non-galaxy tracers such
as the Lyman-α forest and 21 cm could be optimal. Unique selling points: BAO is arguably the
most mature method and is theoretically and experimentally well understood.
Supernovae Type Ia (SNe Ia): Description: Type Ia supernovae (SNe Ia) are bright standard
candles that probe the expansion history of the Universe through calibrating the luminosity
distance as a function of redshift. Status: The CfA Supernova program, Carnegie Supernova
Program (CSP), SDSS-II SN survey, Supernova Legacy Survey (SNLS), PanSTARRS, DES
Supernova program, ESSENCE, GOODS survey, CANDELS/CLASH, Supernova Cosmology
Project (SCP) and others have measured SNe Ia over wide range of redshifts. In the 2020’s, LSST
will deliver O(105) photometric SNe Ia, WFIRST will measure SNe Ia in the infrared with the
resolution and photometric stability achievable from space, while the Foundation survey will
yield many low-redshift SNe. Future challenges: Photometric SNe require very precise
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photometric and filter calibrations, spectroscopic characterization and updated light curve models.
Unique selling points: SN are the dominant probe of the Hubble diagram at the lowest redshifts,
z < 0.5, but are also bright enough to be used over a wide range of redshift.
Time delays strong lensing: Description: Time delays measured between the multiple images of
the same object provide measurements of the Hubble parameter independently of other distance
measures. Status: Dedicated observational programs like H0LiCOW/COSMOGRAIL and
STRIDES, which combine ground and space observations of 20 lensed quasar systems, are
publishing competitive H0 constraints. Future surveys like LSST will discover orders of
magnitude more systems, with ∼400 expected to be suitable for dark energy science, and measure
hundreds of strongly gravitationally-lensed supernovae, which should enable similar measurement
with less monitoring. Future challenges: Mass modeling, external convergence, and correlations
between the modeling and the cosmological parameters remain the largest systematic uncertainty.
Unique selling points: This technique is independent from other distance indicators and can
achieve precision to constrain dark-energy parameters from a relatively small number of systems.
Standard Sirens: Description: Gravitational waves (GW) from the inspiral of two massive
objects are a powerful measure of a source’s luminosity distance. Status: The discovery of GWs
by Advanced LIGO in 2016 ushered in the era of gravitational wave astrophysics. From one
source with an identified optical counterpart, a 7% measurement of the Hubble constant was
obtained. The 2020s could see standard sirens providing a 2% determination of H0.
Future challenges: As more sources are discovered, selection effects in both the GW surveys and
the EM follow-up programs will need to be included in systematic error analyses.
Unique selling points: The amplitude of the standard siren signal is computed from fundamental
physics and does not rely on empirical calibration.

Growth
Weak Gravitational Lensing: Description: Measurements of coherent distortions in galaxy
shapes due to weak gravitational lensing reveal the distribution of dark matter in the Universe.
Status: Dedicated surveys including CFHTLS, KIDS, DES and HSC have achieved statistical
precision of a few percent in the amplitude of matter fluctuations at redshift z . 1.2. Lensing
surveys in the 2020s from the ground (LSST) and space (WFIRST and Euclid) will cover large
sky areas at significant depths. Dedicated space-based observations will enable major advances
via high resolution, wavefront stability, and access to the NIR. Future challenges: Photometric
redshifts and blending will require further methodological improvements. Another challenge is
the theoretical modeling of the signal in the presence of astrophysical systematics (intrinsic
alignments and baryonic effects). Unique selling points: Combining tomographic measurements
of weak lensing with measurements of the expansion history may be the most effective way to
probe GR potentials and distinguish between dark energy and modified gravity.
Cosmic Microwave Background (CMB) lensing: Description: Measuring distortions in the
CMB fluctuations can probe weak gravitational lensing to the surface of last scattering. Status:
Lensing reconstructions from the Planck satellite currently provide the highest signal-to-noise
measurements on the linear amplitude of fluctuations at z < 6. Simons Observatory, CMB-S4 and
PICO will improve these limits by an order of magnitude in the coming decades.
Future challenges: In order to minimize systematic uncertainties from secondary anisotropies, the
CMB lensing will rely on the polarization signal, which is weaker and has its own, yet to be fully
understood foregrounds. Unique selling points: CMB lensing provides a long redshift lever-arm
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and has fewer observational systematic uncertainties compared to galaxy lensing.
Peculiar Velocities: Description: Peculiar velocities are motions of galaxies not comoving with
the expansion of the Universe. They can be measured for individual objects using redshift and a
distance indicator. Status: 6dFGS and 2MTF have measured tens of thousands of galaxy peculiar
velocities with accuracies of 20%. Supernova surveys have higher precision, but are limited by
low numbers. Upcoming surveys like TAIPAN, WALLABY+WNSHS, ZTF and LSST will make
large peculiar-velocity catalogs, enabling tight constraints on growth at low redshift.
Future challenges: Proper handling of the asymmetric uncertainties on distance indicators is
crucial. Unique selling points: Understanding the local peculiar velocity field constrains dark
energy and dark matter directly, and helps with systematic control in other probes by
characterizing the local density environment.
Redshift-space distortions (RSDs): Description: Redshift-space distortions are peculiar
velocities detected statistically as an apparent anisotropy of the measured correlations in any
large-scale structure survey. Status: Spectroscopic galaxy surveys, including 6dFGS, WiggleZ,
VIPERS, BOSS and eBOSS, have measured the growth parameter fσ8 with 3-10% precision
depending on modeling assumptions. In the coming decade DESI, PFS, Euclid and WFIRST will
make percent-level measurements at z < 1.8 and WFIRST will push to z ' 3. Future challenges:
Theoretical modeling of non-linear effects, and the connection between light and mass, remain
the main issue. Unique selling points: One of the most direct ways of measuring the growth rate
with the potential to significantly improve signal-to-noise with better modelling.
Kinetic Sunyaev-Zeldovich (kSZ) effect: Description: The kSZ effect is the Doppler shift of
CMB photons caused by scattering off the plasma in late-time galaxies and clusters. Status: The
first detection of the pairwise kSZ was made in 2012 using data from the Atacama Cosmology
Telescope and BOSS galaxy survey. This science will benefit from the large survey area CMB
experiments (SO, CMB-S4, PICO), and their cross-correlation with optical galaxy surveys (LSST,
DESI). Future challenges: A difficulty in constraining growth using kSZ measurements is the
degeneracy with the optical depth in galaxy clusters and groups. Unique selling points: This is an
independent probe of the velocity field at low redshift, with different systematics and modelling
assumption compared to redshift-space distortions.
Galaxy Clusters: Description: Galaxy clusters are the most massive, gravitationally bound
structures in the Universe, and their abundance provides a sensitive probe of growth. Status:
Planned optical/IR (LSST, WFIRST, Euclid), Sunyaev-Zeldovich (SO, CMB-S4, PICO), and
X-ray (eROSITA, ATHENA) surveys will provide cluster catalogs over a wide range in mass and
out to unprecedentedly high redshifts. Future challenges: The main difficulty is obtaining an
accurate absolute cluster mass calibration and precise relative mass estimates. The latter are
considerably improved using X-ray data; while eROSITA will provide these at relatively low
redshifts, an ongoing source of high-throughput, targeted X-ray observations will be required to
fully exploit the high-redshift catalogs provided by thermal SZ surveys. Unique selling points:
Galaxy clusters are a statistically sensitive probe of growth with largely independent systematics.

3 Conclusions and Outlook
The coming decade will be an exciting one for dark energy studies, as a new generation of
powerful observational facilities comes to fruition. The combination of high-precision data with
growth in theoretical models and statistical techniques will allow a great leap in our cosmological
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leverage, testing our theories in unprecedented ways and perhaps sharpening the fault lines in
present results. As we look toward the coming decade in cosmology and the study of dark energy
and modified gravity, we want to highlight the following themes.

Improving statistical and systematic precision on the equation of state is essential. The
current statistical precision for the wCDM model is around 5% (1 σ). To formally distinguish
between a w = −1 model and a −1 < w < 0 model at 1:100 statistical odds, one would need to
achieve sub-percent level precision. Even more importantly, dark energy models with dynamical
equations of state remain significantly underconstrained. Understanding dark energy to the
percent level in the acceleration era and tens of percent in the high-redshift pre-acceleration era
remains one of the long-term programmatic goals of cosmology. This also requires support for
further methodological advances to reduce systematic uncertainties.

Multiple methods bring robustness. Characterizing dark energy and modified gravity
through as many different methods as possible provides valuable cross-checks and data
consistency tests as methods hit systematic floors. We see critical opportunities here both in tests
of expansion history (e.g., the current tension in the value of H0) and growth (e.g., the current
concerns within lensing and cluster analysis regarding the value of σ8).

Multiple observatories bring robustness. If there is evidence of deviations from General
Relativity or evidence for dynamical dark energy, it is essential to cross-check results with
independent experiments using multiple techniques with careful control of systematic errors.

Cross-correlations are ever more important. Applying similar methods over the same
volume brings about numerous cross-correlations that have proven to be very valuable. In order to
make maximal use of cross-correlations, it is essential to support simulation and data
processing/analysis tools that are compatible across surveys and collaborations.

Blind analysis is desirable but challenging. This is especially true with upcoming complex
analyses that involve numerous, often subjective, analysis choices. Executing a blind analyses
requires careful methodological planning, extensive support from simulations, and delicate
coordination, particularly when combining numerous methods across a broad collaboration.

Studies of dark energy and modified gravity are related. All but the simplest dark energy
models predict modifications of gravity, although the two can be distinguished by comparing
probes of the background expansion and the growth of structure [16]. Both exhibit deviations
from ΛCDM on cosmological scales (e.g. [17, 27]) that can be tested with the same probes. They
should be studied as one field.

Dark energy science in the 2030s will require technical R&D support. The path forward
into the 2030s will require an ongoing investment at the observational frontier. Whether by
mapping of huge cosmic volumes or by discovery and characterization of rare transients,
improving our view of dark energy will require continued technological ambition. Design and
development of a broad technical portfolio in this decade will be needed to achieve the necessary
capabilities, both statistically and systematically, in a cost-effective manner.

The field of cosmology has been adept at unifying large teams to produce and optimize
state-of-the-art facilities, the products of which have advanced many areas of astrophysics. We
believe that the mystery of dark energy and the diverse range of measurements that bear on it
remains a compelling driver to motivate this development in the coming decade.
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Masahiro Takada, Fabian Köhlinger, Hironao Miyatake, Atsushi J. Nishizawa, Hiroaki
Aihara, Robert Armstrong, James Bosch, Jean Coupon, Anne Ducout, Paul Ho, Bau-Ching
Hsieh, Yutaka Komiyama, François Lanusse, Alexie Leauthaud, Robert H. Lupton, Elinor
Medezinski, Sogo Mineo, Shoken Miyama, Satoshi Miyazaki, Ryoma Murata, Hitoshi
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