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Active Galactic Nuclei as Neutrino Sources
Active galactic nuclei (AGN) with relativistic jets, powered by mass accretion onto the central su-
permassive black hole (SMBH) of their host galaxies, are the most powerful persistent sources
of electromagnetic (EM) radiation in the Universe, with typical bolometric luminosities of 1043–
1048 erg s°1. The extragalactic ∞-ray sky [1] is dominated by blazars, the most extreme subclass
of AGN with jets pointing close to our line of sight [2, 3]. Blazars can be divided into two classes:
BL Lac type objects and flat spectrum radio quasars (FSRQs). The non-thermal radiation pro-
duced in jets spans across the EM spectrum (from radio wavelengths to TeV ∞-rays) and can
vary in brightness over month-long timescales or just within a few minutes [e.g., 4, 5, 6].

The broadband jet radiation generally shows two broad emission features [7, 8]. The low-
energy one, extending from radio to X-rays, is believed to originate from the synchrotron emis-
sion of relativistic electrons and positrons (henceforth, electrons) in the jet. However, the origin
of the high-energy component, extending to the ∞-ray band, is not well understood. Leptonic
scenarios have been put forward to explain the high-energy “hump” as a result of inverse Comp-
ton scattering of low-energy photons from the jet itself or from its environment (e.g., accretion
disk, broad line region, or dusty torus) by relativistic electrons [e.g. 9, 10, 11, 12].

All known processes that can accelerate electrons to relativistic energies can also act on
protons and heavier ions (hadrons). In fact, the latter can reach much higher energies than
electrons, because they are not as strongly affected by radiative losses [13]. If the power car-
ried by relativistic ions in the jet is high enough, then their radiative processes become rel-
evant. Lepto-hadronic scenarios, which explain the broadband emission with both leptons
and hadrons, attribute the high-energy jet emission solely to interactions involving hadrons.
These processes include proton synchrotron radiation [e.g., 14, 15, 16, 17, 18] and intra-source
[e.g., 19, 16, 20, 21, 22, 23] or intergalactic electromagnetic cascades [e.g., 24, 25, 26, 27, 28] in-
duced by protons via photohadronic (p∞) interactions. Jetted AGN are also among the most
promising candidate sources of ultra-high-energy cosmic rays (UHECRs), with many possi-
ble acceleration sites [29, 30], such as inner and large-scale jets with knots and shear [e.g.,
31, 32, 33, 34, 35, 36], hot spots [e.g., 37, 38], and radio bubbles or cocoons [39]. Neutrinos
from AGN can also be produced in various sites, such as cores [e.g., 40, 41, 42, 43, 44, 45] and
jets [e.g., 31, 46, 47, 48, 49, 50, 51], or in the host galaxies [52, 53, 54, 55, 56, 57], galaxy clus-
ters [58, 59, 60], and intergalactic space by the interaction of escaping UHECRs from AGN with
cosmic radiation fields [e.g., 24, 26, 27].

Unlike photons, high-energy neutrinos can only be produced by hadronic interactions. The
detection of AGN as neutrino point sources is therefore of paramount importance not only for
understanding how the most powerful and persistent particle accelerators of the Universe work
but also for unveiling the origin of UHECRs that has been a big enigma for more than fifty years.

The Current Multi-Messenger Picture of AGN
The discovery of an astrophysical neutrino flux in the 10 TeV to 10 PeV energy range by the
IceCube observatory [76, 77] represents a breakthrough in multi-messenger astrophysics. The
origin of these neutrinos remains a mystery. No strong steady [75] or variable [78, 79] neu-
trino point sources, or a neutrino correlation with the Galactic plane [80] has been identified in
the IceCube data. This suggests that a large population of extragalactic sources, such as non-
blazar AGN, galaxy clusters/groups or star-forming galaxies, could be responsible for the bulk
of the diffuse neutrino flux. In addition, the similar energy densities of the diffuse neutrino and
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Fig. 1: a) Fermi-LAT ∞-ray sky map with the error region for the IceCube-170922A event overlaid [61]. b)
Spectral energy distribution (SED) of TXS 0506+056 (red markers [61]) compared to the sensitivity of cur-
rent (solid black, [62, 63, 64, 65, 66, 67]) and future (dashed gray, [68, 69, 70, 71, 72, 73]) EM instruments
scaled for different exposures. Neutrino upper limits from the detection of IceCube-170922A [61] and the
best-fit neutrino spectrum from the 2014-2015 flare [74] are shown in blue compared to the seven-year
sensitivity curve for IceCube [75].

UHECR backgrounds hint at a common origin of these emissions [81]. The diffuse gamma-ray
and neutrino backgrounds can also be explained simultaneously [82], [83, 60], which may be ex-
plained by AGN embedded in galaxy clusters/groups or starburst galaxies [83, 60, 56]. Nonethe-
less, the diffuse flux between 10°100 TeV cannot be solely explained by either pp scenarios for
star-forming galaxies or p∞ scenarios for AGN jets (including blazars and radio galaxies [e.g.,
50, 84, 85, 86, 87, 88]; see [89] for a review). The contribution of ∞-ray blazars, in particular,
to the diffuse neutrino flux has been constrained to the level of ª 10°30% by correlation and
stacking analyses [90, 91, 58]. The dominant contribution to the diffuse neutrino flux in the 10-
100 TeV range may come from sources that are either genuinely opaque to ∞-rays, such as AGN
cores [45] or that are hidden to current ∞-ray detectors, such as MeV blazars [84].

The fact that ∞-ray-emitting AGN are not the dominant contributors to the bulk of the dif-
fuse neutrino flux does not prevent them from being detectable point neutrino sources. Sev-
eral studies claimed a connection between individual ∞-ray blazars and high-energy neutrino
events, although with marginal correlation significances [92, 93, 94]. The first compelling ev-
idence for the identification of an astrophysical high-energy neutrino source was provided in
2017 by the detection of a high-energy neutrino event (IceCube-170922A) in coincidence with
a strong EM flare of the ∞-ray blazar TXS 0506+056 (Fig.1a) [61]. In fact, blazar ∞-ray flares are
ideal periods for the detection of high-energy neutrinos due to the lower atmospheric neutrino
background contamination and the higher neutrino production efficiency [e.g. 51, 23, 94, 95,
58]. The detection of IceCube-170922A and the prompt dissemination of the neutrino sky posi-
tion to the astronomical community triggered an extensive multi-messenger campaign to char-
acterize the source emission [96, 97, 98, 99]. The rich multi-wavelength data set enabled for the
first time detailed theoretical modeling that could explain the neutrino emission in coincidence
with the EM blazar flare [97, 99, 58, 100, 101].

A follow-up analysis of archival IceCube neutrino data also unveiled neutrino activity dur-
ing a ª100-day window in 2014-15 [74]. Intriguingly, this detection was not accompanied by
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flaring in ∞-rays as in the case of IceCube-170922A, although some debate exists about a poten-
tial hardening in the blazar ∞-ray spectrum during the neutrino activity period [102, 103]. The
lack of sensitive multi-wavelength observations during this period is a significant hurdle in the
multi-messenger modeling of the neutrino “flare” [58, 104, 105]. This is particularly true for the
keV to MeV band where no observations are available, but a high photon flux due to the cascade
of the hadronically-produced ∞-rays is theoretically expected [22, 106, 58].

So far, there is no convincing theoretical explanation for all multi-messenger observations
of TXS 0506+056, which has raised a number of important questions: What makes its 2014-15
flare activity special? Is there more than one neutrino production sites in AGN? Can we find
more robust AGN-neutrino associations? What would be the best observing strategy, especially
if GeV ∞-rays and TeV-PeV neutrinos are not produced at the same time? We outline next the
required observational capabilities to address these questions in the coming decade.

Multi-messenger Studies of AGN in the Next Decade
The construction of next-generation neutrino telescopes coupled with an expansion of multi-
wavelength follow-up efforts and the improvements in broad-band coverage and sensitivity of
new EM observatories will provide a major boost in the identification and study of AGN as neu-
trino emitters. We here outline a number of activities that will help solidify the AGN high-energy
neutrino connection by detecting more sources beyond TXS 0506+056. Together with multi-
wavelength follow-up campaigns [107], we will be able to probe the physics of neutrino and EM
emission in AGN.

2019 20 21 22 23 24 25 26 27 28 29 30 31

LSST

HESS/MAGIC/VERITAS

HAWC

CTA

Fermi

AMEGO*

IceCube-Upgrade IceCube-Gen2

KM3NeT-Phase 1

IceCube

KM3NeT-2 (ARCA)

Swift
INTEGRAL

SVOM

NuSTAR

TAP

STROBE-X
IXPE

Gradients indicate uncertainties in 
possible start/end of missions.

Fig. 2: Timeline of some of the instruments
expected to be involved in multi-messenger
studies of AGN in the coming decade (some
not yet funded or with unclear timelines).

Neutrino observatories: The primary back-
grounds to the detection of astrophysical neutri-
nos are muons and neutrinos produced by cosmic
ray interactions in the upper atmosphere. These
have a steeply-falling energy spectrum, with at-
mospheric neutrinos becoming sub-dominant to
the observed astrophysical ones at ª 100 TeV. As a
result, the primary target energy range for detec-
tion of neutrinos from AGN is in the 100 TeV–PeV
range, although clustering in time or space can
significantly lower the energy threshold. The high-
est possible neutrino flux from UHECR sources
has been calculated assuming a calorimetric rela-
tionship [81], which establishes that a gigaton or
larger scale instrument is needed to observe astro-
physical neutrinos above 100 TeV.

IceCube is the largest operating neutrino in-
strument in this energy range and the first to reach
a gigaton mass. It uses the under-water/ice Cherenkov technique in the south polar ice cap
achieving an angular resolution of . 0.5o, and continuously observes the entire sky. IceCube’s
realtime alert program notifies the astronomical community if a likely astrophysical neutrino
signal is identified to enable follow-up EM observations. This includes near-realtime public
alerts for single neutrinos events of likely astrophysical origin such as IceCube-170922A using
the GRB Coordinate Network (GCN) [108]. Two underwater neutrino detectors are currently in
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operation in the northern hemisphere, with better angular resolution than IceCube, but much
smaller volumes and thus reduced sensitivity: ANTARES [109] and Baikal NT-200 [110].

The next decade will see the design, construction and operation of next-generation under-
water/ice neutrino telescopes which will expand upon currently running experiments: KM3NeT
[111] and GVD [112] in the northern hemisphere, and IceCube-Gen2 at the South Pole [113].
The ARCA component of KM3NeT [114] will have a sensitivity similar to or better than that of
IceCube by a factor of two. And, as a result of its mid-latitude location, this sensitivity will cover
a wider range of declinations. In IceCube, best sensitivity is achieved for ± = °5± to 90±, while
KM3NeT will cover ª95% of the entire sky. The IceCube-Gen2 upgrade will increase the size of
the detector by a factor of ª 6 and improve on sensitivity to point sources, such as AGNs, by
a factor of ª5 with respect to IceCube. Assuming an Euclidean geometry and uniform source
distribution (admittedly simplistic), this improvement would result in ª10 observations similar
to that of TXS 0506+056 over 10 years with Gen2. Given their increase in sensitivity, future neu-
trino detectors are also expected to provide a rate of neutrino alerts substantially larger than the
current ª 10 per year, with minute latency, improved angular resolution (ª 0.2± [115, 114]) and
higher astrophysical purity to enhance EM counterpart searches.

At> 10 PeV energies, radio neutrino detectors such as the proposed ARA [116] and ARIANNA
arrays [117] (which have recently joined efforts to propose the Radio Neutrino Observatory,
RNO, in Antarctica), and GRAND [118] will characterize the high-energy end of the astrophysi-
cal neutrino spectrum and potentially identify AGN counterparts to neutrino events1.

EM Observatories: Decoding the information simultaneously carried by the neutrino and EM
signals is crucial for unequivocally pinpointing the production sites of multi-messenger emis-
sions in AGN. This is not a simple task, as uniquely illustrated by the multi-messenger obser-
vations of TXS 0506+056, especially because the properties of the physical engine can vary on
timescales from minutes to months. With the advent of neutrino detectors and future EM ob-
servatories with wider field and energy-range coverage (see Figs. 1b and 2 for coverage and
timeline), we will be able to test if neutrinos are correlated with periods of flaring activity in
a specific energy band. Identifying such a correlation (or the lack of one) would shed light on
the properties and location of the emission region.

EM observations of the low-energy SED “hump” (in the radio to X-ray range) can constrain
the synchrotron emission from the AGN, which is expected to be dominated by leptonic pro-
cesses. Radio observations can provide photometric coverage of a selection of radio-loud AGN
[120] and also imaging of the jet or the core regions [121] that could then be correlated to a
neutrino emission period [94, 122]. Future facilities such as ngVLA [123] would improve on
these efforts. When not affected by light constraints, optical facilities can provide sensitive
monitoring of AGN across the entire sky. With several survey instruments coming online in the
next decade that can provide AGN monitoring with high sensitivity and cadence, in particular
LSST [124, 125], there will be many opportunities for neutrino correlation studies.

The critical energy band for the multi-messenger modeling of AGN emission is at high ener-
gies (keV and above), where photons from hadronic processes are expected to be produced via
synchrotron radiation of protons or/and secondary pairs produced by pion and muon decays
or by the ∞∞ absorption of high-energy photons [126, 106, 22, 127, 101, 99]. In the soft X-ray
band (< 10 keV) the Neil Gehrels Swift observatory has been the main follow-up instrument to

1A separate white paper [119] details plans for high-energy astrophysical neutrino studies in the coming decade.
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search for EM counterparts to singlets [128, 129] or multiplets [130] of high-energy neutrinos
given its rapid repointing capability. In addition, a Swift monitoring program exists for Fermi-
detected sources which provides coverage of some of the brightest AGN, but a higher cadence
on a larger number of sources would be desirable in the coming decade. Current wide-field
instruments such as INTEGRAL [131] and MAXI/GSC [132] offer larger sky coverage than Swift
at the expense of sensitivity, but future wide-field instruments such as TAP [133], STROBE-X
WFM [134] (both recently selected for NASA probe mission studies) and TAO-ISS [73] would de-
liver competitive sensitivity while covering a large fraction of the sky. This capability may soon
be crucial as Swift could cease operations and other instruments like Chandra are not well-
suited for prompt observations of large sky regions. We therefore advocate the continuation
of Swift to provide soft X-ray coverage for these studies until comparable capabilities become
available or are complemented by European-led missions such as SVOM [135].

In the hard X-ray band (> 10 keV), NuSTAR will continue to be the most sensitive instru-
ment. While the observational constraints and field of view of NuSTAR would not allow it to
search for potential AGN neutrino counterparts, it could be used for follow-up observations
like in the case of TXS 0506+056 [136]. No facilities sensitive enough to detect a substantial
number of AGN in the MeV band currently exist, which is critical towards understanding the
hadronic emission from AGN jets as the cascading of high-energy photons would results in
a high flux in the hard X-ray to MeV band. Missions like AMEGO [137] or the European-led
e-ASTROGAM [65] would be critical in enabling these studies. Beyond the MeV AGN moni-
toring, AMEGO will also provide polarimetric measurements which can help differentiate be-
tween leptonic and hadronic emission processes [138, 139]. Similar polarization signatures in
the optical [140] could be explored using existing capabilities, or with IXPE [141] in the X-ray
range [138]. In the GeV band, the Fermi-LAT [142] is a critical instrument to study the ∞-ray
emission from AGN and no comparable missions are foreseen in the coming future in this band.
We therefore advocate the continuation of the Fermi mission into the coming decade.

Current and new observatories in the very-high-energy band (VHE, E > 100 GeV) will con-
tinue follow-up observations of neutrino events and potential AGN neutrino counterparts in
the coming decade. Current telescopes such as H.E.S.S., MAGIC, and VERITAS will continue
their neutrino follow-up programs [143] during the first half of the decade at which point it is
expected that CTA will start scientific operations and provide the most sensitive coverage in the
VHE band [144]. Wide-field VHE instruments such as HAWC [145], while less sensitive than
CTA, will continue to monitor a large number of AGN that could be correlated with neutrino
observations. Future observatories of this type are under construction [146], and some have
been proposed in the southern hemisphere where no instrumentation of this kind currently
exists [69, 147, 148, 149]. We encourage VHE ∞-ray studies of AGN-neutrino correlations.

Conclusion and outlook: The detection of astrophysical neutrinos by IceCube and the ev-
idence for neutrino emission from a blazar offer exciting opportunities for the study of high-
energy neutrinos and photons from AGN in the coming decade. We advocate for a multi-
messenger approach that combines high-energy neutrino observations performed by telescopes
that will come online in the next decade, and multi-wavelength EM observations by existing
and future instruments, with an emphasis on soft X-ray to VHE ∞-ray coverage. The unique ca-
pabilities of these instruments combined, promise to solve several long-standing issues in our
understanding of AGN, the most powerful and persistent cosmic accelerators.
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