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Abstract: Supernova remnants serve as nearby laboratories relevant to many areas in
Astrophysics, from stellar and galaxy evolution to extreme astrophysics and the formation of the
heavy elements in the Universe. TheChandra X-ray mission has enabled a giant leap forward in
studying both SNRs and their compact stellar remnants on sub-arcsecond scale. However, such
high-resolution imaging studies have been mostly limited to the nearby and/or relatively bright
objects. There is no question that we are missing a large population, especially in external
galaxies. Within our own Galaxy, we are presented with new fundamental questions related to
neutron starsÕ diversity, kicks, relativistic winds and the way these objects interact with, and
impact, their host environments. In this white paper, we highlight some of the breakthroughs to be
achieved with future X-ray missions (such as the proposedAXIS probe) equipped with
sub-arcsecond imaging resolution and an order of magnitude improvement in sensitivity.
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1 Motivation

Supernova Remnants (SNRs) are among the most fascinating astrophysical objects in the Uni-
verse. They impact the chemical enrichment and evolution of galaxies, accelerate cosmic rays to
extremely high energies, and those resulting from core-collapse explosions make the most mag-
netic and compact objects in the Universe: neutron stars (NSs). NSs are the best laboratories to
study extreme physical conditions that can not be achieved even in the most advanced laboratories
on Earth, as well as relativistic outflows and jets that are ubiquitous in Astrophysics. These objects
have not only driven scientific breakthroughs, technology development and interdisciplinary con-
nections, but they also fascinate the public and young people.
In this white paper, we focus on SNRs and associated isolated NSs. We highlight outstanding sci-
ence breakthroughs that can be achieved only with sub-arcsecond resolution and high sensitivity
in the X-ray band – at least comparable to, or better than, Chandra’s imaging resolution, and with
an order of magnitude improvement in sensitivity. Such capabilities will be met by the proposed
probe AXIS [23].
We note that the future missions Athena and Lynx are expected to achieve high-spectral resolution
that will significantly benefit SNR science; however the high-resolution spectroscopy aspect is dis-
cussed in separate white papers (B. Williams et al.; L. Lopez et al.).
We here specifically aim to address the following questions: (i) How do pulsars’ relativistic winds
communicate with, and energize, their surrounding medium?; (ii) How do NSs evolve and what
drives their kicks; (iii) How do SNRs impact cosmic magnetism and galaxies’ evolution?

2 Neutron Star Winds: How do they impact their surroundings?

Figure 1: Simulated AXIS images of PWNe, using Chandra images
as input, illustrating the fine structures that can be observed with mod-
est exposure times ranging from 25 ks to 100 ks. The high-resolution
over a larger FoV and low background will allow the detection of faint,
thin structures out to large distances from the powering pulsar.

Magnetized relativistic plasmas phe-
nomena are ubiquious among many
classes of astrophysical objects. Of
these, Pulsar Wind Nebulae (PWNe)
[10] are some of the best particle ac-
celerators in the Universe, with ef-
ficiencies close to 30%, generating
particle with energy up to 1 PeV,
the “knee” in the cosmic ray spec-
trum (cf. Crab Nebula). With its
arcsec resolution, Chandra opened a
new window to resolve torii and jet
structures originating from particles
accelerated in shocked regions [16].
Some of these features (resolved also
in the optical with HST) are observed
to move on sub-arcsecond scales with
relativistic velocities. The location of

the termination shock, where the ram pressure of the NS’s relativistic wind is balanced by the nebu-
lar pressure, often lies .0.1 pc from the pulsar. Deep, high resolution AXIS observations offer the
possibility of resolving these shocks and providing new insight on the origin, internal dynamics,
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and evolution of PWNe, and the magnetic field in which they are embedded.
Fig. 1 shows examples of PWNe simulated with AXISto illustrate the high-resolution structures

that can be imaged from young and evolved nebulae using exposure times 5-10 times shorter than
Chandra’s. Such high-resolution imaging studies have been mostly limited to the nearby, brightest,
or youngest objects; or else very deep exposures are needed for resolving faint structures. AXIS
will make a leap in probing a much larger sample of objects in our Galaxy and beyond.

PWNe in the Magellanic clouds are rare but will be finally within reach. An AXIS-like resolu-
tion of 0.3!! corresponds to 0.1 pc at the LMC distance, exactly the scale of termination shocks in
PWNe. Increasing the population of spatially resolved PWNe will shed light on star formation as a
function of metallicity, but will also answer open fundamental questions about PWNe, pulsars and
high-energy astrophysics processes; some of which are listed here for their broad implications:

• Pulsar (PSR) wind magnetization and anisotropy: These properties of the PSR wind show
directly in the appearance of the nebulae, when imaged at high energy with sufficiently high
spatial resolution: high speed jets can only appear if the wind is sufficiently magnetized
and anisotropic [7]. On the other hand, these properties of the wind tell us about the inner
workings of the PSR magnetosphere and about magnetic dissipation in relativistic plasmas,
a topic which is relevant for many high energy sources and phenomena.

• Particle acceleration at a transverse relativistic shock: High spatial resolution X-ray imaging
and the study of time variability of small-scale features in the inner part of PWNe (X-ray
rings and wisps) can constrain where and in what physical conditions particle acceleration
occurs [24] and assess whether it is the shock or some other form of dissipation, like mag-
netic reconnection, that can provide such efficient acceleration. In addition, the process
behind particle acceleration bears information on the pair multiplicity of the PSR magneto-
sphere, namely the number of electron-positron pairs produced by each electron extracted
from the star surface. NSs and PWNe are in fact likely to be the primary contributors of the
so-called positron excess [1], that in recent years has attracted much attention both in the
cosmic rays and dark matter communities.

• Pulsar contribution to leptonic cosmic-rays: In bow-shock PWNe (BSPWNe), after a high-
speed PSR has left its parent SNR, the wind is only confined by the ISM ram-pressure so that
electrons and positrons are free to leave the system and be released in the ISM in the back
of the shock, hence contributing to the cosmic ray flux [2]. Details of the particle release
are important to determine the PWN contribution to the above-mentioned positron excess.
Mapping the spectral index close to the NS and out to large distances is essential to assess
the particle acceleration process and particle aging effects. Furthermore, multi-TeV particles
are sometimes released from the head of the system, through very long and thin X-ray bright
channels [17, 3]. AXISwill be essential to establish the particle release from BSPWNe and
properly synthesize the spectrum of cosmic ray leptons.

• Magnetar Wind Nebulae: There is growing evidence of compact and faint PWNe associated
with magnetars, or magnetars-in disguise, whose powering mechanism remains a puzzle.
Their analysis is complicated by their faintness, compactness and contamination from a dust
scattering halo [26], [31], [5]. It is not clear if their X-ray emission is powered by rotation,
magnetism or both (e.g., [27]). AXISwill play an important role in studying the nature and
origin of nebulae around systems that display a magnetar like activity, thus also requiring a
rapid response to bursting sources.
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3 Neutron Stars Diversity: Nature or Nurture?

The combination of high spatial resolution, low background and high effective area is ideal for de-
tecting a new generation of fainter young pulsars (PSRs) in SNRs. This can help address important
questions on the birth and evolution of PSRs, and explain their seemingly diverse properties.

PSRs were originally detected by their radio emission (e.g., Crab, Vela) but X-ray observations
over the past two decades have discovered young, isolated NSs with spectral and timing properties
markedly different from those of the typical rotation-powered radio PSRs. The radio-quiet PSRs
are best described by their implied magnetic Þeld that range from1010 ! 1014 G. The largest of
these are associated with the magnetars, slow rotators (" 2-12 s), that display a variety of temporal
phenomena, such as short and long scale transient outbursts, random episodes of short (" 1 s)
burst of hard X-rays, and erratic spin-down. Most notably, their X-ray emission far exceeds that
predicted for a rotation-powered PSR, based on their spin-down luminosity. X-ray emission of
magnetars is believed to arise from magnetic losses from a strongly magnetized (B > 4.4 #
1013 G) isolated NS [8]. However, the detection of magnetar-like activity from seemingly classical
rotation-powered PSRs [11, 21, 13] complicates this picture. Similarly, pulsations detected from
the central compact objects (CCOs), PSRs in SNRs with extremely small magnetic dipole Þelds
[12], are a puzzle since the only mechanism thought to be capable of creating a non-uniform surface
temperature is anisotropic heat conduction in a strong magnetic Þeld.

The latter problem can be addressed withAXISspectral-temporal observations of young NSs
to model their surface emission using phase-resolved spectroscopy. This will allow a better un-
derstanding of their magnetic Þeld conÞgurations. A leading explanation for the generation of the
observed hot spots on CCOs requires crustal toroidal Þelds to insulate the magnetic equator from
heat conduction. This toroidal component is expected to be generated by differential rotation in the
proto-neutron star dynamo. To have a signiÞcant effect on the heat transport, the crustal toroidal
Þeld required in all models is> 1014 G, far greater than the poloidal Þeld, if the latter is measured
by the spin-down. Do all CCOs harbor an inner magnetar buried in their crust without (currently)
contributing to its external dipole responsible for its slow spin-down? Most importantly, how do
the CCOs and the magnetars relate to each other and to the classical rotation-powered radio PSRs?

The proposed very high spatial resolution ofAXIScoupled with its high time resolution CCD
imaging modes can provide breakthrough science for faint CCOs in SNRs. Of great interest is
detecting pulsations from the 300 year-old CCO in SNR Cassiopeia A, the long-sought compact
object discovered with the Þrst lightChandraobservation [25]. This will provide the critical ener-
getics and magnetic Þeld estimates for a PSR close to its birth values. Alternatively, a strong upper
limit on any pulsations would help advance theories of atmospheric physics of NSs. Lastly, the
order of magnitude increase in sensitivity will be needed to discover the missing CCO decendants,
and in turn address the population of core-collapse SNRs in our Galaxy.

4 Neutron Star Velocities: What drives their kicks?

The origin of high velocities in NSs is a long-standing mystery in astrophysics. There are two main
competing mechanisms to kick NSs: (a) anisotropic ejection of the stellar debris (Òhydrodynamic
kickÓ, [15]) and (b) asymmetric-neutrino emission (Òneutrino-induced kickÓ, [4]). Fortunately, the
two scenarios predict a clear difference in NS kick velocities and SN asymmetries. The hydrody-
namic kick mechanism predicts that NS velocities are directed opposite to the stronger explosion
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where explosive nucleosynthesis elements from Si to Fe are preferentially expelled, whereas the
neutrino-induced kick mechanism either suggest no correlation between NS velocities and SN
asymmetries, or predict the strongest mass ejection in the direction of NS motion.

Recent X-ray observations of SNRs revealed that NSs preferentially move opposite to the bulk
of either X-ray emission [14] or intermediate-mass elements [18], supporting the hydrodynamic
kick scenario. However, in many cases, NS velocities are indirectly inferred from displacements
between NS positions and geometric centers. The number of robust samples is still quite small.
An instrument likeAXISwill signiÞcantly increase the observational sample, as described below.
To distinguish between the two NS kick scenarios, it is critically important to measure both NS
proper motions and detailed distributions of SN ejecta. NS proper motions are important not only
because they allow us to estimate NS velocities, but also because they help to check if a NS is
really associated with a SNR and to infer an explosion site by tracing back the proper motion. The
long time baseline, which will be available with the combination ofChandraandAXIS, will be
the key to reduce systematic uncertainties on NS proper motions. In addition, AXISÕs superior
throughput and wide Þeld of view, together with its moderate spectral resolution, will allow us to
map detailed SN ejecta distributions for faint and large SNRs.

So far, we have only three SNRs (Puppis A, Cas A, G292.0+1.8) for which both NS kick ve-
locities and ejecta distributions are robustly estimated. All three systems show an anti-correlation
between NS kick velocities and ejecta distributions, favoring the hydrodynamic origin for the NS
kicks. AXISwill increase the number of such samples substantially, and will reveal if the hydro-
dynamic kick scenario is the only process that can accelerate the NS or if other mechanisms, such
as the neutrino-induced kick scenario, can play a role. Increasing the samples is also important to
search for correlations between the degrees of explosion asymmetries and NS kick velocities, and
between the NS surface magnetic Þelds and NS kick velocities.

5 SNR shock impact on cosmic magnetism

Figure 2: Simulated radial proÞles of shocked emission
from a young, 20 pc diameter SNR, at a distance of 1 kpc.
The 100 ks AXIS simulations, for an ampliÞed magnetic
Þelds of 100µG and 1 mG, illustrate that the shock narrows
in width for stronger Þelds.

Turbulent magnetic Þelds at young SNR
shocks are expected to be signiÞcantly ampli-
Þed by a cosmic-ray current driven instability
that develops in the shock precursor. Magnetic
Þeld ampliÞcation (MFA) is thought as the key
element in non-linear Diffusive Shock Accel-
eration theory [6]. X-ray observations with
Chandra have revealed the presence of nar-
row synchrotron X-ray Þlaments at the outer
edge of young SNRs, demonstrating that the
strong shocks at young SNRs are indeed ca-
pable of amplifying the interstellar magnetic
Þeld by large factors [29]. The narrowness of
synchrotron X-ray Þlaments could be due to
rapid synchrotron cooling of high-energy elec-
trons in the postshock ßow if the magnetic
Þeld reaches⇠ 0.1 mG. In some cases, time-

variability of the synchrotron X-rays can be seen, which is another evidence in favor of MFA [28].
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The turbulent magnetic Þelds, likely ampliÞed by CR current driven instabilities, can be imprinted
in the spatial structures of the synchrotron X-ray Þlaments. Testing the theoretical predictions is
best achieved with high-angular resolution measurements of the energy dependence on the width
of the Þlamentary structures (see e.g., [32]). This is illustrated in Fig. 2 showing the radial proÞles
of the synchrotron X-ray Þlaments expected to be observed byAXIS.

6 Population Studies: From our Galaxy to the Nearby Universe

SNRs radiate copiously at energies of 0.5 Ð 2 keV, a range that is difÞcult to study globally in the
Milky Way because of absorption by matter in the Galactic disk, with an absorbing column density
that amounts to a few 1021 cm�2 within less than a kpc. In order to study the population of SNRs
in a galaxy as a whole we have to look beyond the Milky Way.

By studying SNRs in nearby galaxies, we particularly want to address following questions:
• What is the fraction and spatial distribution of core-collapse SNRs vs. type Ia SNRs? These

can be identiÞed based on their morphology combined with spectral properties.
• What is the X-ray luminosity function (XLF) of SNRs? How are the XLFs of different

galaxies related to the underlying stellar population, ISM, metallicity and SNR evolution?
• What is the distribution of SNRs in comparison to that of the cold ISM? Are SNRs correlated

with large structures in the ISM or with star-forming regions?
• How many of the SNRs show correlations with molecular clouds? Can the SNR population

explain the cosmic ray density in galaxies?

First X-ray surveys of the larger galaxies in the Local Group, the Magellanic Clouds, M31 and
M33 were performed withEinsteinandROSAT, yielding catalogs of SNRs and candidates in these
galaxies. A detailed list of X-ray SNRs in M31 was created using an XMM-Newton survey. While
SNRs in the Magellanic Clouds can be generally well resolved spatially and studied in detail [22],
so far, only a few SNRs in M 31 have been resolved withChandra[19, 20, 30].

The Magellanic Clouds, M31 and M33 have very different ISM densities, metallicities, and star
formation rates, making differences in their ensemble of X-ray SNRs of great interest for testing
theories for the dominant SNR and ISM characteristics that cause the X-ray emission of SNRs.
AXISwill allow us to extend the study of SNR populations to nearby galaxies outside the Local
Group including large spiral galaxies like M81, M83, or NGC 300, in which candidates of X-ray
SNRs have been detected usingXMM-Newtonor Chandra, but more detailed studies have not been
possible. In addition, 0.300 corresponds to⇠1.1 pc at the distance of M31 which will allow us to
detect and resolve all mature SNRs in M31 and M33, allowing for the Þrst time detailed X-ray
population studies of SNRs in galaxies beyond the Magellanic Clouds.
Last but not least, the combined sub-arcsecond resolution and high sensitivity will be needed to
resolve small/young remnants, including SN 1987A which will should enter the ejecta-dominated
phase in the 2030Õs [9]. This is also crucial for comparing the X-ray emission with that at other
wavelengths, where high-resolution images are or will be available in the future.

In summary: Following up on the legacy ofChandra, an X-ray telescope with sub-arcsecond
resolution combined with high sensitivity and ToO capabilities will further revolutionize the Þeld
of SNRs, PWNe and NSs in our Galaxy and the nearby Universe. These capabilities will be an
absolute requirement to advance the Þeld, especially in synergy with upcoming high-resolution
facilities across the electromagnetic spectrum.
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