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Abstract
Our Solar System is one of many, and Earth may be one of many habitable, and even inhabited,
planets. Limiting our understanding of the latter is our lack of knowledge on how frequently
temperate, rocky exoplanets have access to water and organic molecules, the basic ingredients for
the origins of life. More generally, it s not clear what compositional diversity we should expect in
exoplanets, and how these compositions depend on the details of planet formation and early
evolution. We propose that these related factors, planet compositions and the chemical
habitability of temperate exoplanets, be addressed through a combination of new facilities aimed
at mapping out the volatile content of planet forming disks – the precursors of exoplanetary
systems. This needs to be supplemented by supporting astrochemical laboratory experiments and
by fostering community support for interdisciplinary scientific efforts. A holistic view of disk
chemical compositions will enable a comprehensive understanding of the origins of observed
planetary compositions, a predictive theory of planet formation and initial chemical conditions,
and the development of probabilistic models of planet atmospheres and hydrospheres.
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1 The astrochemical origins of exoplanet compositions

Planets form in disks of gas and dust around young stars. The chemical compositions of these
disks direct or influence all stages and aspects of planet formation.To interpret observations of
exoplanet locations, sizes, and densities across the HR diagram we need a predictive theory of
planet formation, including nascent planet compositions, that takes into account the origins of
their mass and chemical reservoirs. This requires a deep understanding of how disk chemical
structure relates to planet formation and what those disk chemical structures are around stars of
different kinds, from the early stages of protostellar disk formation – observations of disk dust
structure shows that planet formation may be well on its way in disks as they emerge from their
natal envelope [1] – up to disk dispersal a few million years later.

First, the overall chemical structure, and especially the division of volatiles between solids and
gas across the disk, may regulate what kind of planets form in different locations [2]. A
decreasing disk temperature with radius results in a series of condensation fronts, or snowlines,
most notably of water between < 1− 10 au [e.g. 3]. Snowlines affect the efficiency of the early
stages of planet formation because they can enhance or stunt grain growth [4, 5, 6], and may
therefore produce ‘preferred’ planet formation locations [7].

Second, snowline locations and other chemical gradients across planet-forming disks determine
the volatile elemental compositions (C, O, N, S, P etc), and initial chemical compositions of
planets. Snowlines change the elemental ratios in gas and dust across the disk, which is the idea
behind a major interpretive framework for exoplanet compositions. This is aimed at relating the
C/O ratios retrieved from exoplanet atmospheres to the gas or dust C/O ratio at their disk
formation location [e.g. 8, 9, 10]. Through their impact on solid compositions, snowlines also
affect the composition of planetesimals, which may provide secondary atmospheres to terrestrial
exoplanets during analogs to our late heavy bombardment [11, 12, 13].

Finally, the disk chemical composition determines the organic composition of forming planets
and planetesimals and therefore whether temperate planets are likely to be chemically habitable
and hospitable to abiogenesis. Small organic molecules have been observed at all disk radii
[14, 15, 16, 17]. Temperate planet volatile inventories may sample large swaths of the disk
because of 1) volatile transport between different disk regions, and 2) bombardment of icy
planetesimals formed beyond the snowline. Developing probabilistic models of temperate planet
hydrospheres and atmospheres therefore requires knowledge of the chemistry across the disk.

In summary, whether aiming for a framework to interpret observed planet and exoplanet
characteristics, or a predictive theory of planet formation and planetary habitability, we need to
understand the chemical structures of disks within which planets form. Some aspects of these
structures are accessible with existing observatories; ALMA has transformed our view of
chemistry on scales of 10 au and larger in the past few years. Our understanding of chemistry on
small scales, of the distribution of water, and of the planet-forming midplane remains limited,
however. This white paper aims to set out observational, laboratory and theoretical priorities for
addressing big unknowns in disk chemistry, and thus remove the roadblocks that are preventing us
from developing a holistic theory of planet formation.
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2 Observatory priorities in the coming decade

Characterizing all molecules of interest to planet formation in all relevant disk regions requires a
panchromatic approach ranging from IR to radio observations. Each wavelength addresses a
unique aspect of the chemistry of planet formation. The high sensitivity IR observations needed
to map out the chemistry in the innermost regions of disks and the ice reservoirs amenable to
absorption studies will be addressed by JWST and the next generation ground-based optical/IR
telescopes. Below we identify three additional key areas of inquiry, which all require observations
at longer wavelengths, and the kind of facilities needed to address them.

2.1 Probing the water reservoir: Need for a cooled far-IR observatory
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Figure 1: Illustration of the central importance of the water snowline in
planet formation. Also shown is the spectral emissions of water vapor for
hot (600 K), warm (150 K), and cold (50 K) gas. Spectral emissions are
taken from Blevins et al. [18].

Water is essential
for life as we know
it, and its distribution
in disks regulates
the likelihood of a
temperate planet forming
wet and/or becoming
water-rich through
later bombardment
of water-rich
planetesimals. While
some constraints on water
in disks can be achieved
at IR and millimeter
wavelengths, only
the far-IR gives access
to the water reservoir
across and beyond the
water snowline (Fig. 1).
Ground-based millimeter
observations are
hampered by the Earth’s
atmosphere and can only

detect water vapor under extremely favorable conditions in favorable targets [19]. Near- and
mid-IR wavelengths give access to ice absorption features, which will provide valuable
information on ice compositions in a small number of disk with the ‘right’ viewing geometries,
and to hot water vapor close to the star (the lowest energy state accessible via the JWST
spectrometers is 800 K above the ground).

The water vapor present around and beyond the water snowline, tracing the water reservoir in the
main planet and comet forming regions, is best observed at far-IR wavelengths. The far-IR also
uniquely enables observations of water ice features in emission, removing the restrictions on disk
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Figure 2: Examples of dust and chemical substructures in planet forming disks with ALMA [22, 23, 17, 24,
25, 26, Öberg et al. in prep., Bergner et al. subm.]. The bottom right panel is from a simulation, illustrating
the kind of results we expect from an ongoing large program aimed at high-resolution chemical studies with
a beam of ∼12-15 au.

geometry accompanying ice absorption studies [20, 21]. A cooled far-IR space observatory
provides the only means to mapping out the water reservoir in a large sample of ‘normal’ disks
and thus to develop a probabilistic framework for water incorporation into forming planets and
water delivery to nascent planets.

Recommendation: Characterization of water vapor and ice across statistical samples of disks at
different evolutionary stages and across the HR diagram requires a cooled ( 4 K), large aperture
(> 5m) far-infrared (∼ 20 µm – 179 µm) observatory with a sensitivity below 10−20 W/m2 at 179
µm and high-resolution spectroscopy capabilities (R > 3× 104 at 179 µm). The latter is required
to use line kinematic profiles to map out the water vapor across the disk, and to achieve sufficient
line-to-continuum contrast; gas-rich disks have high thermal dust continuum emission near
179 µm, and high spectral resolution is required to increase the contrast between weak line
emission superposed on the strong continuum and therefore enable detection of water emission in
sources with lower water content. In summary we recommend an observatory with the
capabilities of the proposed Origins Space Telescope.

2.2 Elemental ratios and organic reservoirs in the proto-Habitable Zone:
Need for a more sensitive ALMA

During the past decade ALMA has revolutionized our view of dust and chemical structures and
sub-structures in planet forming disks (Fig. 2). CO snowlines have been localized using both
chemical tracers and direct observations of rare CO isotopologues [27, 28, 29]. C/N/O ratios in
intermediate disk layers have been constrained through simultaneous observations of molecular
O, C, and N-carriers [23, 30]. Deuterium and nitrogen fractionation, a key tool to determine the
origins of volatiles including Earth’s water and atmosphere, has been found to be active on all
disk scales between 10s and 100s of AU [31, 32]. Finally, disks have been found to be rich in
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nitriles [33, 26, 24], a key ingredient of the most promising origins of life scenario here on Earth
[34], and active promoters of O-rich ice chemistry [35, 17], the starting point of complex
molecule formation in circumstellar environments[36, 37]. All observations so far have, however,
probed scales of 10s of au at best. Upcoming programs are taking these studies into the main
comets and Gas and Ice Giant planet forming regions at scales of ∼7 au, as well as exploring the
relationship between dust and chemistry sub-structure. These observations will push ALMA to its
utmost (e.g. in an ongoing large program 130h is used to observe 5 disks).

Observations of C/N/O ratios, S and P molecular carriers of interest to prebiotic chemistry, and
organic compositions on smaller scales, e.g. around the water snowline and in the terrestrial
planet forming region, are not possible with ALMA in its current state. Nor are observations with
<10 au resolution in large samples of disks, or detections of large complex organic molecules.
Such observations require a more sensitive millimeter and submillimeter interferometer coupled
with a more efficient set of backends than is currently available at ALMA.

Recommendation: We recommend adding more sensitivity to ALMA as well as to upgrade the
receivers and correlators to enable more line detections per observation. To resolve gas-phase
emission lines within a few AU requires a (sub)millimeter interferometer that is at least 5× more
sensitive than ALMA. This effectively means adding more antennas, since most of its receivers
already operate close to the theoretical sensitivity limit.

2.3 Chemistry in the deepest disk layers: Need for a sensitive radio array

The recent realization that disks are ripe with dust sub-structure [1, 22, 25] presents a problem for
disk chemistry studies, since this implies that there are disk regions that are optically thick even at
millimeter wavelengths [38, 39]. Longer wavelengths are needed to probe line emission from disk
midplanes inside of dust sub-structures. Radio lines of CH3OH, CH3CN, carbon chains and the
major N-carrier NH3 are promising targets for such studies. Compared to millimeter wavelengths,
radio molecular lines are intrinsically weak, however, and at least an order of magnitude increase
in sensitivity is required compared to existing radio facilities, including the JVLA.

Recommendation: Constraining the chemical compositions in the deepest and most obscure disk
layers require sensitive radio observations. We therefore recommend an expansion of the JVLA to
increase its sensitivity by more than an order of magnitude. The current plans for the ngVLA
would accomplish these goals and also readily provide the resolution of a fraction of an arc second
required to map out the otherwise obscured organic content across nearby protoplanetary disks.

3 Laboratory and theory priorities

Even the best observatories can only provide a partial snapshot of the chemistry in planet forming
disks. A complete view of the chemistry of planet formation requires model development to
interpret observed chemical patterns, and to predict the evolution of this chemistry as planets are
assembling. Models in their turn need to be anchored by laboratory experiments.

5



3.1 Funding for laboratory astrochemistry

Many key disk chemical structures are regulated by chemical reactions that are difficult or
impossible to calculate from first principles and therefore require experiments to characterize.
Examples of data that can only be obtained through experiments are sublimation kinetics of disk
volatiles[40, 41], grain coagulation and shattering properties [42], ice chemistry reaction rates
governing the growth of chemical complexity during planet formation [43, 44, 37], and many
gas-phase reactions [45].

Recommendation: Laboratory astrochemistry experiments often fit an awkward funding
category that is difficult to support within the existing NSF astronomy grant system; they are
generally too expensive for the typical PI grant, but too small for larger instrumentation grants.
Developing a grant program for small-sized, 1-2 M$ instrumentation and laboratory equipment is
key for the health of the laboratory astrochemistry field.

3.2 Working Across Disciplines

The major challenge for modeling the chemistry active during planet formation is that in many
disk regimes it is strongly coupled to the dynamical evolution of disks, including accretion flows,
grain growth and drift, vertical and radial mixing of material through diffusive flows and
turbulence. All of these processes work in concert to the incorporation of the ingredients of
habitable worlds into planetesimals. This chemical-dynamical coupling affects our interpretation
of water vapor/ice observations, snowline locations, and the main carriers of life’s elements (C, H,
O, N, S, P). Further chemical-dynamical couplings are likely at the heart of some of the key
mysteries of planetary science/cosmochemistry such as the puzzling oxygen isotopic anomalies
seen in primitive meteorites [46], and the meaning of the D/H fingerprint and its relation to the
origin of Earth’s water [12, 47, 48, 49]. Theoretical work on these processes is inherently
interdisciplinary cutting across the boundaries of cosmochemistry, planetary science, earth
science, astrochemistry, exoplanet science, and research into life’s origins.

A fully integrated chemical-dynamical model has so far been computationally prohibitive. To
date these issues have only been addressed via simple chemical approximations (such as ice
condensation/sublimation) with grain growth [50] or detailed gas turbulence with chemistry and
no dust evolution [51, 52]. Developing such a model should be a key priority of the field. Taking
these models into the realm of planet formation further requires the ability to connect to models
of the physical/chemical evolution within planetesimals, bombardment of young differentiating
Earth’s, atmospheric loss, and giant planets perhaps influencing redistribution of material from
beyond the ice-line. The complexity of these efforts represents a challenge, but if we wish to
understand the birth of a habitable planet it must be done. A current obstacle to achieving this goal
is that, beyond the large scale efforts of the Astrobiology Institute, funding for cross-disciplinary
work is scarce with limited options within traditional funding avenues from the NSF or NASA.

Recommendation: There is an urgent need for more funding and recognition of the value of
cross-disciplinary work. We recommend that NASA and NSF create more individual programs at
the grant program level that enable such efforts.
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Nicolás T. Kurtovic, Viviana V. Guzmán, John M. Carpenter, David J. Wilner, Shangjia
Zhang, Zhaohuan Zhu, Tilman Birnstiel, Xue-Ning Bai, Myriam Benisty, A. Meredith
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