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Abstract: Understanding the processes that drive galaxy formation and shape the observed prop-
erties of galaxies is one of the most interesting and challenging frontier problems of modern astro-
physics. We now know that the evolution of galaxies is critically shaped by the energy injection
from accreting supermassive black holes (SMBHs). However, it is unclear how exactly the physics
of this feedback process affects galaxy formation and evolution. In particular, a major challenge is
unraveling how the energy released near the SMBHs is distributed over nine orders of magnitude
in distance throughout galaxies and their immediate environments. The best place to study the im-
pact of SMBH feedback is in the hot atmospheres of massive galaxies, groups, and galaxy clusters,
which host the most massive black holes in the Universe, and where we can directly image the
impact of black holes on their surroundings. We identify critical questions and potential measure-
ments that will likely transform our understanding of the physics of SMBH feedback and how it
shapes galaxies, through detailed measurements of (i) the thermodynamic and velocity fluctuations
in the intracluster medium (ICM) as well as (ii) the composition of the bubbles inflated by SMBHs
in the centers of galaxy clusters, and their influence on the cluster gas and galaxy growth, using
the next generation of high spectral and spatial resolution X-ray and microwave telescopes.



Supermassive Black Hole Feedback and Galaxy Evolution

Understanding the processes that drive galaxy formation and shape the observed properties of
galaxies is one of the most important and challenging frontier problems of modern astrophysics. A
consensus has emerged over the last two decades of observations and modeling that the evolution
of galaxies is critically shaped by the energy injection from supernovae and active galactic nuclei
(AGN). These processes are collectively known as “feedback.” Understanding the transition from
star-forming to quiescent galaxies, known as “quenching,” and the physical processes that shape
quiescent galaxies, is key to understanding the most fundamental properties of galaxies. The most
common hypothesis is that both the initial quenching of galaxies and their maintenance in a quies-
cent, non-star-forming state is due to the effects of sub-relativistic wide-angle AGN winds during
high accretion rate stages of evolution (quasar/ejective mode) and collimated relativistic AGN jets
during the low accretion rate stages (radio/maintenance mode) (e.g., [1, 2]). However, despite its
paramount importance, the physics of AGN feedback is not well understood and the question

How does the supermassive black hole feedback affect galaxy evolution?

remains a major unanswered question in astrophysics. While recent simulations demonstrated that
it is possible to tune phenomenological AGN feedback prescriptions to produce massive galaxies
that resemble the observed quiescent ellipticals (e.g., [3–5]), we do not have a satisfactory under-
standing of the actual physics of the AGN feedback.

In this white paper, we focus on the maintenance mode of the AGN heating (see [6–8] for a
review, white papers). AGN jet powers are in principle sufficient to offset the cooling observed
in X-rays in ellipticals and galaxy clusters (e.g., [9, 10]). However, this power is released in the
very vicinity of the central SMBHs (on scales on the order of a gravitational radius, i.e., ∼20 AU
for a billion solar mass black hole, which is comparable to the size of the Solar System) and must
be distributed over scales comparable to cooling radii, where the cooling time is comparable to
the Hubble time (∼100 kpc). Thus, one major challenge is to unravel how the energy released
near the supermassive black holes is distributed over nine orders of magnitude in distance.
Furthermore, it is uncertain how much energy can be transferred from the AGN to the ambient
medium and what physical processes are responsible for its thermalization in the ICM and intra-
group medium. All of these issues have fundamental bearing on shaping the properties of galaxies.

The best place to study the impact of SMBH feedback is in the hot atmospheres of massive
galaxies, groups, and galaxy clusters, which host the most massive black holes in the Universe,
and where we can directly image the impact of black holes on their surroundings. Novel mea-
surements of the thermodynamical and kinematic properties of the ICM and intragroup medium
are needed to constrain models of AGN feedback. Specifically, we identify the following critical
new measurements that are needed to transform our understanding of the physics of super-
massive black hole feedback: (i) detailed measurements of the density, temperature, pressure
fluctuations and velocity field in the ICM with the aim of unambiguously probing the energetics
of feedback and establishing the dominant mechanisms of energy transport from black holes to the
ICM (e.g., sound waves and shocks vs turbulence, sloshing and/or buoyancy waves), and (ii) di-
rect measurements of the composition of AGN bubbles inflated by SMBH in the centers of galaxy
clusters with the aim in unravelling the impact of the direct cosmic ray (CR) heating on the ICM.
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Physics of Feedback: Fluctuations in the Intracluster Medium
One plausible ICM heating mechanism is the thermalization of gas motions. These motions

could be generated by propagating sound waves, rising bubbles of relativistic plasma, mergers, or
galaxy motions. Their importance lies not only in their association with the heating processes, but
also in their ability to reshape galaxies by propelling molecular outflows to galaxy-scale distances.

Figure 1: Maps of adiabatic (sound waves) and isothermal (bubbles) fluctuations based on mock X-ray
observations of a Perseus-like cluster. Photon counts in the soft and hard X-rays are processed such that
isobaric fluctuations are removed [see 11, for details]. Left: 300ks Chandra observation Center: 300ks Lynx
observation Right: 10Ms Chandra observation equivalent to a 1Ms observation with the next generation
X-ray mission characterized by ∼10 times larger effective area. White arrows identify sharp structures
associated with shocks, which will be detectable with future X-ray missions.

Black Hole–Generated Sound Waves, Sloshing Motions, and Turbulence Supermassive black
holes could deliver heat to the surrounding gas by generating sound waves and weak shocks. Co-
herent large-scale, approximately concentric ripples have been observed in the Perseus [12] and
Virgo clusters [13], and other objects, and have been tentatively interpreted as sound waves. The
dissipation of the mechanical energy of these waves could heat the ICM. This potential mode of
heating is particularly appealing as the sound waves are expected to distribute the AGN energy very
quickly (i.e., on the cool core sound crossing time) and in a quasi-isotropic fashion, thus offseting
cooling while not violating the gas velocity dispersion constraints (∼200 km s−1) from the Hitomi
mission [14]. Furthermore, sound waves and weak shocks can carry a substantial fraction of the
enthalpy contained in AGN cavities (e.g., [15]). Interestingly, the fraction of AGN energy chan-
neled into the waves should be systematically smaller for a given source power when the bubbles
are dominated by CR pressure because, for a given bubble size, the bubble enthalpy is larger for a
relativistic rather than thermal fluid. Direct measurements of AGN bubble expansion speeds with
future high spectral and spatial resolution X-ray instruments could help to establish what fraction
of the AGN energy is channeled to the rapidly propagating waves (see Figure 2; [16]).

Despite the promising features of this mode of heating, it is far from certain that the ripples are
indeed sound waves. Coherent large-scale and approximately concentric fluctuations in the ICM
could alternatively be caused by spiral sloshing gas motions [17, 18] (see also white paper by [19])
or gravity waves and turbulence induced by the AGN in the gravitationally stratified ICM (e.g.,
[20–23]). In the latter case, turbulence is expected to be weakly anisotropic with the preference
for motions orthogonal to the radial direction. By measuring velocities of gas motions indirectly
through the analysis of X-ray surface brightness fluctuations (which are consistent with direct ve-
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locity measurements from Hitomi, see [14, 24]), it was shown that the dissipation of these motions
provides enough heat to the ICM to offset radiative cooling (e.g., [23, 25]). In order to unravel
the true nature of the fluctuations, and in particular to unambiguously determine the nature of the
coherent ripples, the equation of state of the ICM fluctuations must be measured on small spatial
scales. While the sound waves are adiabatic fluctuations (dT/T = (2/3)dρ/ρ; where T and ρ are
the temperature and density, respectively), the sloshing motions and turbulence generate predom-
inantly isobaric ones (dT/T = −dρ/ρ; e.g., [11, 26–28]). Although current measurements show
that fluctuations are mostly isobaric, the nature of fluctuations on small spatial scales dominated
by ripple-like structures remains unknown due to a relatively poor spectral resolution and small
effective area of current X-ray telescopes.

Figure 1 shows mock X-ray observations of a Perseus-like cluster processed using a method
designed to filter out isobaric ICM fluctuations [11] based on hydrodynamical simulations of AGN
feedback of [29]. Panels show 300 kilosecond Chandra, 300 kilosecond Lynx, and 10 million sec-
ond Chandra mock observations. While an exposure of 10 Ms is not within the reach of Chandra,
collecting a comparable photon counts in a Ms observation may be within the grasp of future flag-
ship X-ray missions characterized by high spatial resolution and ∼10 times larger effective area.
This is a conservative estimate as the effective area is photon energy-dependent and may be even
larger. This figure demonstrates that (adiabatic) sound waves could be unambiguously detected by
future X-ray missions. Similar techniques could also be used to identify isobaric fluctuations, thus
enabling one to distinguish between contributions to the ICM heating from AGN feedback
(via sound wave heating) and bulk gas motions (via dissipation of isobaric ICM fluctuations).

Figure 2: Simulation of AGN bubble infla-
tion. Inlets show iron line profiles along the
lines intersecting the bubble (D) and ambi-
ent medium (C). Line width ∼10 eV will
be resolved by Lynx.; Adopted from [16].

Microphysics of AGN Feedback Detailed physics of
AGN feedback on microphysical spatial scales is largely
unknown, which limits our ability to reproduce realis-
tic feedback in numerical simulations. Therefore, one of
the goals for the next decade is to unravel the nature of
the ICM microphysics. Over the next decade, significant
improvements in the capabilities of X-ray observatories
are anticipated. The XRISM observatory, with the X-ray
calorimeter, will be launched in early 2022. It will de-
liver spectra of extended X-ray sources with the resolu-
tion at least 30 times better than Chandra’s. However, in
order to understand transport processes in the ICM, it is
necessary to study the statistical properties of gas density
fluctuations and velocities on spatial scales that are com-
parable to the Coulomb mean free path (typically, ∼kpc
to a few tens of kpc) and below. On these scales, theoreti-
cal predictions for the behavior of the ICM vary substan-
tially depending on the properties of transport processes.
The next-generation Lynx observatory would be the best
mission for such science. It will have an effective area at least a factor of 10 larger than Chandra,
a subarcsecond spatial resolution, and spectral resolution even better than XRISM. By measuring
the ICM fluctuation power spectra in density, temperature, and velocity fluctuations, next gener-
ation missions may allow us to probe the mean-free-path scale and below and quantify the level of
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thermal conduction and viscosity of the ICM (e.g., [24, 30]).
Measurements of sound wave density, temperature, and velocity fluctuation amplitudes as a

function of the distance from cluster centers could also help to put constraints on the ICM trans-
port processes. Theoretical arguments suggest that ICM electron (and ion) conduction and ion
viscosity should be significantly suppressed below their respective Spitzer-Braginskii values if the
waves are to propagate out to significant distances from the AGN bubbles (e.g., [31]) as appears to
be the case if the ICM ripples are indeed sound waves.

Data from XRISM will also enable measurements of the gas motions generated by AGN and
probe the velocity amplitudes, scales, anisotropy, and power spectra for a moderate sample of low-z
clusters. It will enable studies of non-equilibrium plasmas and put constraints of non-thermal
electrons accelerated in AGN shocks by measuring line ratios in high-resolution spectra [32].

Physics of Feedback: Composition of AGN–inflated Bubbles
A major uncertainty in determining the power supplied by the AGN jets is associated with the

fact that the composition of radio lobes inflated by the jets is unknown (e.g., [33, 34]). This poses a
problem for future radio surveys that attempt to quantify the cosmological evolution of the energy
injected by the supermassive black holes. It has recently been suggested that the composition
of radio lobes in Fanaroff-Riley I and II radio galaxy populations (FR I and FR II, respectively)
is systematically different. While FR I sources are likely dominated by hadronic CRs (mostly
protons), FR II sources tend to be dominated by leptons (mostly electrons/positrons; [35]). This
implies that translating the jet radio power to its total power is very uncertain. For a given radio
power, the total jet power can be orders of magnitude larger when the jets are heavier, i.e., hadron-
dominated. Interestingly, recent multi-messenger neutrino and gamma-ray observations reported
by the IceCube Collaboration [36] suggested that blazar jets can be sources of hadronic CRs.

Importantly, the amount of coupling between the energy contained in the AGN-inflated bubbles
and the ambient ICM depends sensitively on the composition of the plasma filling them and on the
physics of the CR transport processes (e.g., [37, 38]). Consequently, the effective heating rates are
expected to be different in the lepton- and hadron-dominated jet cases. Bubble composition will
also have an impact on CR transport rates with dramatic consequences for the ICM dynamics and
spatial uniformity of the distribution of AGN energy [37, 39]. Thus, it is imperative to unravel the
composition of AGN cavities to understand how effectively the AGN energy is utilized in the ICM.

As discussed below, the composition of the cavities inflated by black holes has recently been
probed more directly using the Sunyaev–Zel’dovich (SZ) effect (i.e., the inverse Compton (IC)
scattering of CMB photons by the ICM). As we argue below, the composition of AGN outflows
in clusters could be measured independently in X-rays using similar principles. Thus, the next
generation X-ray and SZ instruments may contribute to (i) solving the long standing problem
of the unknown composition of relativistic jets, and (ii) constraining the environment of the
central AGN engine (jet launching, conversion of the black hole spin energy to the mechanical
energy of outflows), thus ultimately linking the scales of gravitational radii (∼Solar System
scales) to the scales of cool cores (∼100 kpc).

Sunyaev–Zel’dovich Effect and the Composition of Black Hole–inflated Cavities The SZ ef-
fect measures the integrated pressure along the line of sight in the ICM. While the interactions of
thermal ICM electrons with the CMB lead to SZ signal, interactions with CRs contribute very little
[39–41]. Recently, based on single-frequency Combined Array for Millimeter-wave Astronomy
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Figure 3: Left: Residuals between the SZ the data and model (see text for details). Positive residuals
imply deficit of the SZ signal, which is consistent with the picture of CR-dominated AGN bubbles. Center:
Synthetic image of the inverse Compton X-ray signal from black hole inflated cavities in a galaxy cluster
(assuming Lynx response) Right: AGN lobe spectra (top), multi-temperature fit residuals (middle) and the
residuals corresponding to single temperature plus power law component representing IC emission (bottom).

(CARMA) observations, [42] reported a suppression of SZ signal from AGN cavities in the galaxy
cluster MS 0735.6+7421. Figure 3 (left panel) shows the map of the residuals between the data and
model based on the SZ signal corresponding to the smooth gas distribution inferred from X-ray ob-
servations and assuming pressure equilibrium between the bubbles and the ambient ICM. Positive
residuals imply deficit of the SZ signal, which implies that the cavities may be either supported by
very diffuse thermal plasma with temperature in excess of hundreds of keV, or are not supported
thermally. Future high-angular resolution, multi-frequency SZ observations (CCAT-prime,
NIKA2, MUSTANG2, TolTEC, AtLAST, LST, CSST, CMB-in-HD) can be expected to pro-
vide much sought-after proof of CR heating of the ICM [see 43–45, for more details].

X-ray Inverse Compton Effect Signal and AGN Bubble Composition AGN cavities are often
filled with radio-emitting plasma. The same electrons should be detectable in the hard X-rays (2-30
keV) due to IC scattering of the CMB. Accompanying these electrons may be relativistic protons
that could contribute to, or even dominate, the pressure inside the bubbles to support them against
the ambient ICM pressure. This theoretically expected IC signal could therefore constrain the par-
ticle content of black hole outflows and the long-term impact of these CRs on clusters. While in FR
I sources this IC signal has so far eluded detection with Chandra or XMM-Newton X-ray obser-
vatories, such measurements could be within the grasp of future X-ray missions combining large
effective area and good spatial resolution, such as Lynx or AXIS [46]. Figure 3 shows synthetic
images (center panel) from a state-of-the-art magneto-hydrodynamical (MHD) simulation of black
hole jet feedback that incorporates the effects of CR heating and transport. In these simulations, a
small fraction of AGN energy is supplied in the form of CR leptons. Right panel shows spatially re-
solved spectra (top right panel), large multi-temperature thermal fit residuals (middle right panel),
and much smaller residuals corresponding to single temperature gas plus power law component
representing IC contribution to X-ray emission (lower right panel). This figure illustrates that this
technique has the potential to rule out high-temperature thermal plasma filling the bubbles and
can directly detect non-thermal emission from CRs inside the AGN bubbles. (Similar type of
analysis for Chandra instrument response demonstrated that it would be impossible to detect the IC
signal.) This method is free from the assumptions of pressure equilibrium between the bubble and
the ambient ICM, energy equipartition between the magnetic fields and CRs, and the characteristic
bubble rise timescales often assumed to be comparable to the buoyancy timescale (e.g., [34, 35]).
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