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Abstract: Astrophysical observations currently provide the only robust, empirical measurements
of dark matter. In the coming decade, astrophysical observations will guide other experimental
efforts, while simultaneously probing unique regions of dark matter parameter space. This white
paper summarizes astrophysical observations that can constrain the fundamental physics of dark
matter in the era of LSST. We describe how astrophysical observations will inform our understand-
ing of the fundamental properties of dark matter, such as particle mass, self-interaction strength,
non-gravitational interactions with the Standard Model, and compact object abundances. Addition-
ally, we highlight theoretical work and experimental/observational facilities that will complement
LSST to strengthen our understanding of the fundamental characteristics of dark matter.
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Summary

More than 85 years after its astrophysical discovery, the fundamental nature of dark matter re-
mains one of the foremost open questions in science. Over the last several decades, an extensive
experimental program has sought to determine the cosmological origin, constituents, and interac-
tion mechanisms of dark matter. To date, the only direct, positive empirical measurements of dark
matter come from astrophysical observations. Discovering the fundamental nature of dark matter
will necessarily draw upon the tools particle physics, cosmology, and astronomy.

LSST will provide a unique and impressive platform to study dark sector physics in the 2020s.
Originally envisioned as the “Dark Matter Telescope”1, LSST will enable precision tests of the
ΛCDM model and elucidate the connection between luminous galaxies and the cosmic web of
dark matter. Cosmology has consistently shown that it is impossible to separate the macroscopic
distribution of dark matter from the microscopic physics governing dark matter. In fact, some
microscopic characteristics of dark matter are only accessible via astrophysics. Studies of dark
matter, dark energy, massive neutrinos, and galaxy evolution are extremely complementary from
both a technical and scientific standpoint. A robust dark matter program leveraging LSST data has
the ability to test a broad range of well-motivated theoretical models of dark matter including self-
interacting dark matter, warm dark matter, dark matter-baryon scattering, ultra-light dark matter,
axion-like particles, and primordial black holes.

LSST will enable studies of Milky Way satellite galaxies, stellar streams, and strong lens sys-
tems to detect and characterize the smallest dark matter halos, thereby probing the minimum mass
of ultra-light dark matter and thermal warm dark matter. Precise measurements of the density and
shapes of dark matter halos in dwarf galaxies and galaxy clusters will be sensitive to dark mat-
ter self-interactions probing hidden sector and dark photon models. Microlensing measurements
will directly probe primordial black holes and the compact object fraction of dark matter at the
sub-percent level over a wide range of masses. Precise measurements of stellar populations will
be sensitive to anomalous energy loss mechanisms and will constrain the coupling of axion-like
particles to photons and electrons. Measurements of large-scale structure will spatially resolve
the influence of both dark matter and dark energy, enabling searches for correlations between the
two known components of the dark sector. In addition, complementarity between astrophysical,
direct detection, and other indirect searches for dark matter will help constrain dark matter-baryon
scattering, dark matter self-annihilation, and dark matter decay.

Astrophysical dark matter studies will explore parameter space beyond the current sensitivity
of the high-energy physics program and will complement other experimental searches. This has
been recognized in Astro 20102, during the Snowmass Cosmic Frontier planning process3–5, in the
P5 Report6, and in a series of recent Cosmic Visions reports7;8, including the “New Ideas in Dark
Matter 2017: Community Report”9. In the 2020s, the impact of the LSST dark matter program
will be enhanced by access to wide-field massively multiplexed spectroscopy on medium- to large-
aperture telescopes (∼ 8–10-meter class), deep spectroscopy on giant segmented mirror telescopes
(∼ 30-m class), together with high-resolution optical and radio imaging. Further theoretical work
is also needed to interpret those observations in terms of particle models, to combine results from
multiple observational methods, and to develop novel probes of dark matter.

This whitepaper is a summary of Drlica-Wagner et al. (2019)10.
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Model Probe Parameter Value
Warm Dark Matter Halo Mass Particle Mass m ∼ 18 keV
Self-Interacting Dark Matter Halo Profile Cross Section σSIDM/mχ ∼ 0.1–10 cm2/ g
Baryon-Scattering Dark Matter Halo Mass Cross Section σ ∼ 10−30 cm2

Axion-Like Particles Energy Loss Coupling Strength gφe ∼ 10−13

Fuzzy Dark Matter Halo Mass Particle Mass m ∼ 10−20 eV
Primordial Black Holes Compact Objects Object Mass M > 10−4M�
WIMPs Indirect Detection Cross Section 〈σv〉 ∼ 10−27 cm3/ s
Light Relics Large-Scale Structure Relativistic Species Neff ∼ 0.1

Table 1: Probes of fundamental dark matter physics in the LSST era, organized by dark matter
model and associated observables. Sensitivity forecasts appear in the rightmost column.

Dark Matter Models
Astrophysical observations probe the physics of dark matter through its impact on structure for-
mation throughout cosmic history. On large scales, current observational data are well described
by a simple model of stable, non-relativistic, collisionless, cold dark matter (CDM). However,
many viable theoretical models of dark matter predict deviations from CDM that are testable with
current and future observations. Fundamental properties of dark matter—e.g., particle mass, self-
interaction cross section, coupling to the Standard Model, and time evolution—can imprint them-
selves on the macroscopic distribution of dark matter in a detectable manner. With supporting
theoretical efforts and follow-up observations, LSST will be sensitive to several distinct classes of
dark matter models, including particle dark matter, field dark matter, and compact objects (Table 1).

Particle Dark Matter: LSST, in combination with other observations, will be able to probe micro-
scopic characteristics of particle dark matter such as self-interaction cross section, particle mass,
baryon-scattering cross section, self-annihilation rate, and decay rate. These measurements will
complement and guide collider, direct, and indirect detection efforts to study particle dark matter.

Wave-like Dark Matter: Axion-like particles and other (ultra-)light dark matter candidates are
a natural alternative to conventional particle dark matter. LSST will be uniquely sensitive to the
minimum mass of ultra-light dark matter and to couplings between axion-like particles and the
Standard Model.

Compact Objects: Compact object dark matter is fundamentally different from particle models;
primordial black holes cannot be studied in an accelerator and can only be detected through their
gravitational force. Primordial black holes (PBHs) formed directly from the primordial density
fluctuations could make up some fraction of the dark matter, and a measurement of their abundance
would directly constrain the amplitude of density fluctuations and provide unique insights into
physics at ultra-high energies.

Dark Matter Probes
Minimum Halo Mass: The standard cosmological model predicts a nearly scale-invariant mass
spectrum of dark matter halos down to Earth-mass scales (or below), e.g., in WIMP and non-
thermal axion models11–13. Modifications to the cold, collisionless dark matter paradigm can sup-
press the formation of dark matter halos on these small scales. Current observations provide a
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robust measurement of the dark matter halo mass spectrum for halos with mass > 1010M�, and
the smallest known galaxies provide an existence proof for halos of mass∼ 108M�− 109M�

14–19.
LSST will expand the census of ultra-faint satellite galaxies orbiting the Milky Way and enable
statistical searches for extremely low-luminosity and low-surface brightness galaxies throughout
the Local Volume. By measuring the galaxy luminosity function at the extreme low-mass threshold
of galaxy formation, LSST will test the abundance of dark matter halos at ∼ 108M�.

LSST will probe dark matter halos below the threshold of galaxy formation with stellar streams
and strongly lensed systems. Galactic dark matter subhalos with masses as small as 105–106M�
passing a stellar stream are capable of producing detectable gaps in the stellar density20;21. By
identifying additional stellar streams and increasing the density contrast of known streams against
the smooth Milky Way halo, LSST will shift analysis from individual gaps into the regime of
subhalo population statistics and (in)consistency with cold dark matter predictions. Importantly,
LSST will allow studies of streams farther from the center of the Galaxy for which confounding
baryonic effects are lessened. Meanwhile, strong gravitational lensing can be used to measure
the abundance and masses of subhalos in massive galaxies and small isolated halos along the line
of sight at cosmological distances, independent of their baryon content. LSST will increase the
number of lensed systems from the current sample of hundreds to an expected sample of thousands
of lensed quasars22 and tens of thousands of lensed galaxies23.

Halo Profiles: Measurements of the radial density profiles and shapes of dark matter halos are sen-
sitive to the microphysics governing non-gravitational dark matter self-interactions, which could
produce flat density cores24 and more spherical halo shapes25. Through galaxy-galaxy weak lens-
ing, LSST will be able to distinguish cored versus cuspy NFW density profiles for a sample of
low-redshift dwarf galaxies with masses Mhalo = 3×109 h−1M�. Studies of the density profiles of
massive galaxy clusters, as well as systems of merging galaxy clusters, will constrain the scattering
cross section at the level σSIDM/mχ ∼ 0.1 − 1 cm2 g−1. Measuring halo profiles over a range of
mass scales will provide sensitivity to dark matter scattering with non-trivial velocity dependence.

Compact Objects: LSST has the ability to directly detect signals of compact halo objects through
precise, short- (∼ 30 s) and long-duration (∼ 1 yr) observations of classical and parallactic mi-
crolensing26. If scheduled optimally, LSST could extend PBH sensitivity to ∼ 0.03% of the dark
matter fraction for masses & 10−1M�. By supplementing the LSST survey with astrometric mi-
crolensing observations, it will be possible to break lensing mass-geometry degeneracies and make
precise measurements of individual black hole masses. Thus, if PBHs make up a significant frac-
tion of dark matter, LSST will effectively measure their “particle” properties and provide insight
into the fundamental physics of the early universe.

Anomalous Energy Loss: Observations of stars provide a mechanism to probe temperatures, par-
ticle densities, and time scales that are inaccessible to laboratory experiments. Since conventional
astrophysics allows us to quantitatively model the evolution of stars, detailed study of stellar popu-
lations can provide a powerful technique to probe new physics. In particular, if new light particles
exist and are coupled to Standard Model fields, their emission would provide an additional channel
for stellar energy loss. LSST will greatly improve our understanding of stellar evolution by pro-
viding unprecedented photometry, astrometry, and temporal sampling for a large sample of faint
stars. In particular, measurements of the white dwarf luminosity function, giant branch stars, and
core-collapse supernovae will provide sensitivity to the axion-electron coupling.
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Figure 1: Left: Projected joint sensitivity to WDM particle mass and SIDM cross section from
LSST observations of dark matter substructure. Right: Example of a measurement of particle
properties for a dark matter model with a self-interaction cross section and matter power spectrum
cut-off just beyond current constraints (σSIDM/mχ = 2 cm2 g−1 and mWDM = 6 keV, indicated by
the red star)10. Complementary observations can break degeneracies among dark matter models
that have the same approximate behavior on small scales but differ in detail.

Large-Scale Structure: LSST will produce the largest and most detailed map of the distribution
of matter and the growth of cosmic structure over the past 10 Gyr. The large-scale clustering of
matter and luminous tracers in the late-time universe is sensitive to the total amount of dark matter,
the fraction of dark matter in light relics that behave as radiation at early times, and fundamental
couplings between dark matter and dark energy. Measurements of large-scale structure with LSST
will enhance constraints on massive neutrinos and other light relics from the early universe that
could compose a fraction of the dark matter. Additionally, LSST will use supernovae and 3 × 2pt
statistics of galaxy clustering and weak lensing to measure dark energy in independent patches
across the sky, allowing for spatial cross correlation between dark matter and dark energy27.

Complementarity
LSST will enable complementary studies of dark matter with spectroscopy, high-resolution imag-
ing, indirect detection experiments, and direct detection experiments. While LSST can substan-
tially improve our understanding of dark matter in isolation, the combination of experiments is
essential to confirm future discoveries and provide a holistic picture of dark matter physics.

Spectroscopy: Wide field-of-view, massively multiplexed spectroscopy on 8–10-meter-class tele-
scopes as well as deep spectroscopy with 30-meter-class telescopes will complement studies of
minimum halo mass and halo profiles.

High-Resolution Imaging: High-resolution follow-up imaging at the milliarcsecond-scale from
space and with ground-based adaptive optics are needed to maximize strong lensing, microlensing,
and galaxy cluster studies with LSST.

Indirect Detection: By precisely mapping the distribution of dark matter on Galactic and extra-
galactic scales, LSST will enable more sensitive searches for energetic particles created by dark
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Figure 2: Left: Constraints on the maximal fraction of dark matter in compact objects from
existing probes (blue and gray) and projected sensitivity for LSST microlensing measurements
(gold). Right: Constraints on dark matter-baryon scattering through a velocity-independent, spin-
independent contact interaction with protons from existing constraints (blue and gray) and projec-
tions for LSST observations of Milky Way satellite galaxies (gold)10;32.

matter annihilation and/or decay, e.g., using gamma-ray or neutrino telescopes28–30. LSST will
also provide sensitivity to axion-like particles via monitoring extreme events in the transient sky31.

Direct Detection: LSST will complement direct detection experiments by improving measure-
ments of the local phase-space density of dark matter using precision astrometry of Milky Way
stars. For dark matter-baryon scattering, small-scale structure measurements with LSST can probe
dark matter masses and cross sections outside the range accessible to direct detection experiments.

Recommendations for Astro 2020
LSST is scheduled to begin a decade of science operation in 2022; however, dark matter research
with LSST is not yet funded. Recognizing new opportunities created by LSST to constrain a range
of dark matter models, we make the following recommendations to facilitate this science case:

• Support individual PIs and collaborative teams to analyze LSST data for dark matter science.
• Support associated theoretical research to better understand the galaxy-halo connection, ex-

amine confounding baryonic effects, perform joint analyses of cosmological probes, inves-
tigate novel signatures of dark matter microphysics, and strengthen ties with the particle
physics community.
• Support complementary observational facilities to investigate dark matter, including spec-

troscopic follow-up and high-resolution imaging, as well as multiwavelength analyses.

We anticipate that the multi-faceted LSST data will allow further probes of dark matter physics
that have yet to be considered. New ideas are especially important as searches for the most popular
dark matter candidates gain in sensitivity while lacking a positive detection. As the particle physics
community seeks to diversify the experimental effort to search for dark matter, it is important to
remember that astrophysical observations provide robust, empirical measurement of fundamental
dark matter properties. In the coming decade, astrophysical observations will guide other experi-
mental efforts, while simultaneously probing unique regions of dark matter parameter space.
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