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What are the key challenges or questions for Earth System Science across the spectrum of
basic research, applied research, applications, and/or operations in the coming decade?

Anthropogenic forces are driving rapid, widespread reductions and redistributions of
biodiversity across the globe'?. These changes are degrading the functioning of terrestrial
ecosystems® and causing increasingly profound impacts on the Earth system and
ecosystem services™*. The international community has called for urgent action to address
the problem of dangerous biodiversity loss®’ including functional biodiversity loss®.
Functional biodiversity represents the variation in biological structures and functions,
including key plant traits like leaf morphology and biochemical composition (e.g. leaf
nitrogen content). These traits are functionally related to plant growth rates, phenology,
tolerances to climatic stress, mortality, and ultimately, the fate of vast amounts of carbon
currently stored in plant biomass and soils. Functional diversity is strongly associated
with taxonomic and phylogenetic measures of biodiversity”'’, but links more directly to
ecosystem processes including carbon, water and energy exchange with the atmosphere
and can thus feed more directly into Earth system models''. Understanding the functional
composition and diversity of Earth’s ecosystems, particularly its forests, is vitally
important for tracking the status and resilience of Earth’s ecosystems, and for predicting
how these life support systems will function in the future. We currently lack the global
scale data we need to do so. Without such data, we cannot track changes in functional
biodiversity now and into the future or effectively connect functional biodiversity
knowledge with existing models of Earth systems.

Why are these challenge/questions timely to address now especially with respect to
readiness?

Currently-available global functional biodiversity data are grossly incomplete and
non-representative taxonomically, geographically, environmentally, temporally, and
functionally. Datasets on species traits continue to grow'>'*, but available data for
vascular plants observed locally under represent the number of species by an order of
magnitude, conspicuously for species-rich tropical regions (Fig. 1). As a result, the
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~100,000 plant species in the megadiverse tropics are represented by only 1-3 plant
functional types in current Earth System Models, severely curtailing their predictive
ability on decadal to centennial timescales'>2°. This spatial and environmental data gap
and bias is exacerbated by even scarcer data on temporal and geographic variation of
functional traits within species. Data on other biodiversity attributes such as species
occurrence, abundance and biomass hold similar biases?"?.
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Figure 1: The data gap--latitudinal variation in the richness of all vascular plant
species (black; after?® and those with data for at least one trait measured
locally (white; from TRY'2, June 2015) within 110km grid cells (N = 11,626).
While species diversity is highest in the tropics, the number of species with no
functional data measured locally is also highest there, limiting understanding of
both biodiversity and of ecosystem function and services.

Even in areas in which current data are relatively complete, widespread biodiversity
change driven by anthropogenic pressures is rapidly rendering existing data obsolete and
outpacing gradual information gains afforded by in situ biodiversity sampling.
Furthermore, existing “global” data has not been collected consistently or systematically,
but is instead compiled post hoc from thousands of disparate research activities, often not
designed to address long-term trends or large-scale patterns. This severe sampling
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inhomogeneity is not readily overcome statistically and continues to impose severe limits
on inference and application in global biodiversity science*2*. An integrated system for
rapidly and consistently imaging, classifying, mapping and monitoring plant functional
diversity globally is urgently needed®.

The state of technology and science readiness is high. Imaging spectroscopy is a
well-established, continuously advancing technology capable of monitoring terrestrial
plant functional diversity on a global scale**?®. Similar techniques are under development
for characterizing marine phytoplankton, seagrasses, and coral reefs*?°. The
technological tools, informatics infrastructure, theoretical basis, and analytical capability
now exist to produce consistent, repeated, global data on functional biodiversity of
Earth’s ecosystems. Spectroscopic remote sensing offers high-dimensional information *',
required to move beyond low-dimensional biophysical remote sensing and provide
information more proportional to the biological diversity (~250,000 plant species) of the
planet. Spectroscopic measurements will help fill critical knowledge gaps, aid the
assessment of global environmental change, and improve predictions of future change.
Continuous, near-global coverage in space and time has the potential to transform basic
science on diversity and function and redesign capture of the properties of the terrestrial
biosphere in Earth system models. Now is the time to give this science target highest
priority.

Why  are  space-based  observations  fundamental to  addressing  these
challenges/questions?

Adequate coverage of plant functional diversity cannot realistically be achieved by
increasing the investment in in situ observations. The areas with sparse present-day
sampling are large, often have limited accessibility, and require arduous fieldwork by
trained teams to collect ground-based data. Near populated areas and research field sites,
approaches such as citizen science or automated cameras can provide some critical data,
but these techniques cannot be uniformly or broadly applied, and in any case are
insufficient for observing current high rates of change, tasks for which space-based data
are ideally suited. Spaceborne measurements can reduce bias errors associated with
relatively sparse in situ systems through their spatial coverage and large sample size, and
can be used to assess bias and extrapolate limited local information. Space-based
systems can also simultaneously measure drivers of ecological change alongside
biodiversity and ecosystem responses. The evolution of remote sensing systems that
combine estimates of drivers of ecological change and ecosystem responses can, in
concert with appropriate and coordinated in sifu and calibration/validation efforts, allow
the testing of ecological theory at previously inaccessible scales. The spatial coverage,
resolution and direct observation of change, demonstrated for biophysical land surface
properties by LANDSAT and MODIS, are critical for improving knowledge of global
ecosystem function using spectroscopic and related techniques.
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Do existing and planned U.S. and international programs provide the capabilities
necessary to make substantial progress on the identified challenge and associated
questions. If not, what additional investments are needed?

A number of planned international missions, such as ENMAP (Germany; 2018) and
HISUI (Japan; 2018), and airborne sensors will have some capability for mapping plant
functional diversity. However, none of these will provide the repeated global coverage
needed to monitor functional diversity change through time. The proposed HyspIRI
mission, called for in Tier 2 of the 2007 Decadal Survey, would provide these
capabilities. Importantly though, the earliest possible launch of such a space-based
spectroscopic capability is urgent. A global baseline dataset obtained while
biogeographic distributions are still in the early stages of change will provide correlations
between distributions of species’ traits and climate. This dataset will serve as a
data-based constraint on the sensitivity of many plant species to climate and as an initial
state of the terrestrial biosphere for prognostic ecosystem models. The sooner such a
dataset is collected, the more scientific information it will provide®.

Investments by NASA, ESA, NSF, the Carnegie Institution, and the University of Zurich
have developed increasingly capable airborne instruments and built robust algorithms for
quantifying a growing number of functional diversity attributes. The additional
investment required in the upcoming Decadal Survey era is a robust, relatively long
duration mission providing global coverage and meeting the spectral measurement
requirements defined in the literature for accurate and precise retrievals.

How will space-based observations be linked with other observations to increase the
value of data for addressing key scientific questions and societal needs?

Space-based data alleviate the inherent spatial sampling bias and sparsity of biodiversity
data in remote regions, but require careful calibration and validation. Assembling
networks and data sets post hoc carries with it the near-certainty of biases: for global
models where calculating the correct integral or average value is critical this is a
particularly serious issue***, Remote observations, contain bias and uncertainty of their
own and so require careful evaluation against a well-designed in situ
calibration/validation program. Not all variables can be sensed remotely, however.
Using spectroscopic remote sensing for key properties of the biosphere may allow
redirection of in situ emphasis to equally-important measurements and experiments, on
soil properties, microbial processes, genomics, and trophic processes. In some cases,
recent advances in ecological theory and further investments in ground data and modeling
will enable linking spectral information to these as well as other plant traits that cannot be
sensed remotely but that are equally important to Earth system prediction.

What are the anticipated scientific and societal benefits?
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Global knowledge of functional diversity is required for a new generation of Earth
System Models'>2°. While current models emphasize simulation of processes such as
evapotranspiration and photosynthesis, long-term ecosystem change is driven more by
changes to the distribution or types of organisms, which include gross changes mediated
by differences in function such as from forest to grassland, and subtler changes such as
replacement of current species by more drought-or-fire tolerant species. These functional
changes directly affect the global climate and carbon systems, and also lead directly to
societal benefits, as the functional properties of species and the structure of the resultant
ecosystems influence the potential for the production of food and fiber, clean water, and
the spread of human and plant pests and pathogens. There are few cases where the
current coarse abstraction of plant types (typically less than 20 in global models) provides
direct insight into the full spectrum of ecosystem services and societal benefits. As
species and consequent functional properties change more and more rapidly, exploiting
the proven spectral techniques to track these changes will provide an ever-widening
spectrum of benefits to humanity.

Regular, timely global biodiversity data has been identified as essential for monitoring
and enabling progress towards meeting the Aichi targets for averting dangerous
biodiversity loss set forth by the Convention on Biological Diversity** . These data will
be used by the International Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES), an analogue to IPCC, national and regional policy makers, land and
wildlife managers, non-governmental organizations, and citizen-science communities.

The science communities that would be involved.

Spectroscopic missions, with data products designed to support the understanding of
global plant functional diversity, will add a new dimension to Earth System Science,
bringing biodiversity and the functional variations between species, squarely into the
center of long term Earth System monitoring and prediction, with benefits to ecological
science and management, and with concurrent benefits to atmospheric science,
hydrology, health and disease, and agronomy. It would require strengthening the growing
ties between the remote sensing science and biological communities. This would build
on very large scientific communities not currently deeply involved with remote sensing
and Earth System Science: for example the Ecological Society of America has over
10,000 members in basic and applied ecology, and the Biogeosciences section of the
American Geophysical Union is one of the fastest-growing components of that society.
Producing global, repeated observations of plant functional diversity with appropriate
cal/val and uncertainty would produce a user community on a par with the MODIS-Land
user community and would include many research areas that are not currently
well-supported by remote observations.
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