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1 Introduction

This effort concerns a variety of mathematical problems in the field of electromagnetic propagation and
scattering, with applicability to design of antenna and radar systems, energy absorption and scattering by
rough-surfaces. This work has lead to significant new methodologies, including introduction of a certain

Figure 1: Absolute value of uw produced by the WGF method for a complex open-waveguide problems.

Windowed Green Function method (WGF), which gives rise to electromagnetic isolation in the solution
process and thereby enables effective use of hybridization of scattering solvers (Section 2), it has lead
to effective methods for simulation of Dielectric antennas and multi-material electromagnetic structures
(Section 3), it has resulted in a novel high-order Rectangular integration method which, relying on surface
descriptions by non-overlapping patches, is well adapted to integral-equation solution on surfaces given in
formats derived from Computer Aided Design, also known as CAD (Section 4), and it has lead to new
solvers for problems of Scattering by periodic arrays of cylinders at Wood-anomalies (Section 5) as well as
Explicit, implicit and explicit-implicit time-domain FC methods of high-order of time accuracy for general
hyperbolic and nonlinear parabolic systems—with application to the Maxwell system, the elastic wave
equation, the Navier-Stokes equations, etc (Section 6). Our conclusions are presented in Section 7.



2 The Windowed Green Function method

The WGF method [20] is based on use of certain families of smooth windowing functions supported on
regions of varying diameter A, which raise from zero to one and then decay back to zero, and which do this in
a slow manner—in such a way that all spatial derivatives of the windowing function tend to zero as A→ ∞.
We have shown that when used in conjunction with appropriate Green’s functions, the windowing functions
can significantly simplify the treatment of problems posed by hybridization of a variety of numerical solvers.
Even the simplest examples of application of this method provide powerful solutions: recent applications
to the problems of scattering by an obstacle in presence of layered media and open-waveguide junctions
(including launching and termination of dielectric waveguides and antennas) have been highly successful
for these conceptually simple but important and famously challenging problems. In particular, the WGF
method yields numerical results of excellent quality for open-waveguide and dielectric antenna problems,
with highly accurate solution of problems including waveguide junctions as well as waveguide termination
and launching/illumination.
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Figure 2: Window function wA and the windowed sections ΓA and Γ̃A of the unbounded curve Γ.

A well known previously existing method, which relies on use of Sommerfeld-integrals (see [18, 19, 26, 28]
and references therein) can be applied to some of these problems. As demonstrated in reference [20], how-
ever, even in this case the windowing approach is highly competitive: in some simple examples considered
in that reference the windowing-based computing times are several orders of magnitude smaller, for a given
accuracy, than the corresponding times required by Sommerfeld-integral methods. For the corresponding
problem of junction of optical fibers in three dimensions, in turn, we do not know of any reasonably feasible
alternative.
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Figure 3: Physical concepts underlying the WGF method.

In all generality, further, when used in conjunction with integral equation formulations of the a Maxwell
problem, the slow-rise windowing functions can be made to act as electromagnetic isolators: the resulting
windowed integral equations effectively separate the windowed region from the remainder of the structure,
and thus yield the current produced solely by direct impact of any given incident field—without edge
effects and without any errors other than those that arise from multiple scattering from regions eliminated
by the windowing process. The windowed operators effectively isolate a selected region of a scattering
structure without introducing spurious reflections, and they therefore provide an excellent basis for an
overall multiple-scattering approach. A crude separation of a substructure would result in completely
incorrect results, including, most importantly, reflections arising from the edges created in the partitioning
process and mathematical difficulties arising from the conversion from a closed surface to an open surface
with unphysical highly-reflecting edges. The slow rise windowing function, in contrast, truly isolates a

2



selected portion of the scattering structure from the remainder of the structure without introduction of
unphysical edge effects!

3 Dielectric antennas, open-waveguide eigensolvers, and multi-material
electromagnetic structures

This effort includes numerical simulation of dielectric-antenna systems. A certain “ mode-matching” ap-
proach, which was mentioned to us by Air Force scientist Dr. Naftali Herscovici, was included amongst
other alternatives in the grant proposal that lead to this effort. After investigating various mode-matching
strategies we concluded that such methods may not prove useful in view of their lack of sufficient space
resolution: for transverse magnetic problems (Neumann boundary conditions) it does not appear generally
possible to achieve convergence on the basis of such methodologies.
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Figure 4: The open-waveguide problem and geometrical structures utilized in the WGF method devel-
oped as part of this effort. Left: Schematic depiction of a typical waveguide scattering problem. Right:
Waveguide WGF setup.

Our failed development of a mode-matching method eventually turned into a fruitful avenue for this
problem [21]. Indeed, we realized that the open-waveguide methods (which we created as an element of the
sought-for mode-matching method) could be combined with the windowing-function methods discussed
in Section 2 to produce high-quality numerical models of dielectric-antenna structures—which are very
much in the spirit of the mode-matching method, but which do not suffer from difficulties arising from
use of guided modes in small spatial cross-sections. In a nutshell, the new method proceeds as follows:
in regions where the geometry departs from perfectly straight waveguides (including possibly launching
and termination regions) a full integral equation solution is performed. In the remainder a open-waveguide
decomposition is used. The enabling element for such a complex domain decomposition is the WGF method
mentioned in Section 21.

In summary: this work has lead to Maxwell open-waveguide eigenvalue solvers for waveguides of arbi-
trary cross-section, as well as a domain decomposition technique based on use of the WGF method, which
is demonstrated in Figures 4 and 5. The present implementation assumes two-dimensional spatial models;
the three-dimensional solvers are currently under development. We believe this methodology should ad-
dress the needs originally communicated by Dr. Herscovici, and we would welcome any further interactions
with AFRL in these regards.

4 Rectangular integration method

An important new methodology which resulted from this effort concerns a novel rectangular integration
technique. This method is a substitute for a former “polar-integration” algorithm [16, 24, 25] for integra-

1We believe this example reveals the true power of the WGF method: a classical integral-equation approach would likely
require solution of integral equations on infinite boundaries which separate the various solution domains. The WGF method
does not require any discretizations except for the actual junction/launching/termination regions.
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Figure 5: Real part and absolute value of uw (left and right columns, respectively) produced by the WGF
method for several open-waveguide problems and antennas.

tion near Green-function singularities: the new approach delivers essentially the same accuracy levels as
the polar-integration approach, but it does not require use of a complex polar integration or otherwise
specialized algorithm [13–15, 22, 23] around edges and corners—and it is therefore very well adapted to
CAD file descriptions of engineering structures. In view of certain issues concerning evaluation of CAD-file
surface attributes, the new approach can be as much as fifty times faster than the previous methodology
for scattering surfaces given by standard CAD files.

The rectangular integration method holds great promise towards simulation of mounted-antenna perfor-
mance, accurate evaluation of radar cross sections, antenna-structure interaction and other challenging elec-
tromagnetic scattering and propagation problems. In particular, for example, the rectangular-integration
method significantly improves the simulation methodologies for dielectric materials. The multiple im-
provements observed include high-order resolution of currents around corners and edges and, interestingly,
a consequent very significant reduction in the number of GMRES iterations needed for convergence to a
given error tolerance. Reductions by factors of ten in the numbers of iterations were observed in many
cases. The program in these regards, which is presently highly active, includes simulation, with high-order
accuracy, of volumetric multimaterial dielectric/PEC structures, as well as modeling of the antenna feeds
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Figure 6: Osprey rotorcraft illuminated by a 900MHz planewave, making it approximately 20λ in electrical
length, is used to demonstrate the novel rectangular integration method described in Section 4.

structures, including the transmission line itself. The latter is accomplished by taking advantage of the
open-waveguide and closed-waveguide eigenvalue solvers for waveguides of arbitrary cross-section discussed
in Section 3 above.

5 Periodic Green function

A number of contributions in the area of rough surfaces and periodic Green functions [9–12] over the span of
this contract include use of a new “windowing” approach to greatly accelerate Green-function calculations
for rough-surface scattering problems [9], extension of this methodology to periodic arrays of cylinders [10],
introduction of acceleration in the periodic solver [11], and extension to three-dimensional periodic prob-
lems [12]. The latter problem is very well known and had defied solution since the early twentieth century.
The new approach (which is based on use of finite-differences of shifted Green functions for acceleration of
convergence even at Wood anomalies) greatly extends the applicability of the Green function methods for
periodic scattering problems. The new method has maximum impact in three dimensional problems—for
which Green function convergence can be extremely poor, as a result of the existence of large numbers of
Wood frequencies. In all, progress in the area of rough surface scattering has been very significant, with
applicability to problems in the general areas of metamaterials, oceanic scattering, light-coupling, etc.

As is well known, classical expansions for quasi-periodic Green functions converge extremely slowly,
and they of course completely fail to converge at Wood anomalies. A number of methods have been
introduced to tackle the slow-convergence difficulty, including the well known Ewald summation method
for two and three dimensional problems among many other contributions. Unfortunately, however, none
of these methods resolve the difficulties posed by Wood anomalies. Recently, a new quasi-periodic Green
function was introduced [9] for the problem of scattering by periodic surfaces which, relying on use of certain
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linear combinations of shifted free-space Green functions (which amount to discrete finite-differencing of
the Green functions) can be used to produce arbitrary (user-prescribed) algebraic convergence order for
frequencies throughout the spectrum, including Wood frequencies [27, 29].

A straightforward application of this procedure leads to an operator equation that contains denomina-
tors which tend to zero as a Wood anomaly is approached. To remedy this situation a strategy based on
use of the Woodbury-Sherman-Morrison formulae is introduced which completely regularizes the problem
and provides a limiting solution as Wood frequencies are approached. To our knowledge, this is the first
approach ever presented that is applicable to problems of scattering by periodic arrays of bounded obstacles
at Wood anomalies on the basis of quasi-periodic Green functions.

6 Explicit and implicit time-domain FC methods of high-order of time
accuracy

Important progress occurred over the first year of this contract in the area of FC (Fourier Continuation)
methods for Partial Differential Equations in the time-domain [1–8]. Our efforts in these areas have
resulted in explicit and implicit solvers for high- and low-frequency problems, for linear and nonlinear
equations, and including media such as fluids, solids and vacuum—and combinations thereof. In each of the
aforementioned publications a significant milestone was achieved. For example, the contributions [1, 7, 8]
provide methods that can be used to enable FC solution of nonlinear equations (such as the Burgers
and Navier-Stokes equations) while maintaining high-order accuracy and dispersionlessness with quasi-
unconditional stability: arbitrarily small values of ∆x can be used for a fixed ∆t, provided the ∆t value
adequately samples the problem. In the contribution [2], in turn, methods for FC solution of problems
containing variable coefficients were introduced; in particular it was found that certain numerical boundary
layers need to be adequately represented in order to ensure accurate solution. Reference [3] introduced
an approach that allows for treatment of traction boundary conditions in wave propagation problems
in solids [3, 4] (Navier’s elastic wave equation) 2. The thesis [5] uses the Fourier Continuation method
in multiple ways: to solve equations, to propagate to distant regions without meshing, etc. The thesis
additionally presented an implementation of a three-dimensional FC solver, hybridized with Discontinuous
Galerkin, and fully implemented in a GPU computational infrastructure.

Figure 7: Demonstration of the proposed FC-based time-domain Maxwell evolution algorithm.

In all of these cases the FC method continued to display the excellent qualities observed previously
in simpler contexts: high accuracy, exceptionally small dispersion and applicability to completely general
configurations. As discussed in the aforementioned contributions, for a given accuracy the FC method

2In view of its applications to seismic wave propagation Dr. Amlani’s PhD thesis received two awards at Caltech, one in our
department and another one for which there is institute-wide competition. The second one is the Demetriades-Tsafka-Kokalis
Prize in Engineering & Applied Science for best thesis, publication or discovery in seismo-engineering.
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can be anywhere between hundreds and up to millions of times faster, for a given accuracy, than previous
alternative solvers.3 The new methods thus enable solution of previously intractable problems.

7 Conclusions

We believe this work has given rise to significant advances in areas of mathematics and scientific computing
closely related to important fields in science and technology. The windowed Green function method provides
multiple important contributions, as discussed in Sections 2, 3 and 5. The rectangular integration method
presented in Section 4 delivers significant acceleration, up to a factor of fifty, in the accurate solution
of general scattering problems including structures such as full electrically-large aircraft—hundreds of
wavelengths in size. The FC-based solvers mentioned in Section 6, finally, are delivering on their promise
of dispersionless solution of general linear and nonlinear partial differential equations in the time domain.
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