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1 Overview

The connections between dissipation inequalities and integral quadratic constraints (IQCs) was the major
thrust explored during the program. In particular, it was shown that existing frequency domain IQC
analysis conditions are equivalent (under mild technical assumptions) to a related time-domain dissipation
inequality condition. This time-domain approach enables applications of IQCs to analyze the robustness
of uncertain time-varying and nonlinear systems. These theoretical techniques can be used to improve the
design and robustness of advanced flight control algorithms.

This report documents the research performed as part of the project entitled “Development of Nonlinear
Analysis Tools Based on a Merged IQC/SOS Theory”. This research is funded by the AFOSR under grant
FA9550-12-1-0339. The technical monitor for the program is Dr. Fariba Fahroo. The following subsections
summarize the key findings of the research supported on this contract. Details can be found in the
publications listed in Section 7.

2 Dissipation Inequalities and Integral Quadratic Constraints

Integral quadratic constraints (IQCs), introduced in [9–11], provide a general framework for robustness
analysis. In this framework the system is separated into a feedback connection of a known linear time-
invariant (LTI) system and a perturbation whose input-output behavior is described by an IQC. The
IQC stability theorem in [9–11] was formulated with frequency domain conditions and was proved using
a homotopy method. The remainder of this section briefly describes stability theorems using dissipa-
tion inequalities and integral quadratic constraints. The main contribution of the work was to show an



equivalence between dissipation theory and IQC approaches [8,21,23]. The benefit of the time-domain dis-
sipation inequality approach is that it can be generalized to cases where the known plant in the feedback
interconnection is nonlinear and/or time-varying. For example, dissipation inequality conditions for linear
parameter varying systems [24] can be extended to include uncertainty. Details on this work can be found
in Reference 2 of the publications listed in Section 7.

2.1 Problem Formulation

Consider the feedback interconnection shown in Figure 1. This interconnection is specified by the following
equations:

v = Gu+ f, u = ∆(v) + r (1)

where r ∈ Lm2e[0,∞) and f ∈ Ln2e[0,∞) are exogenous inputs. ∆ : Ln2e[0,∞) → Lm2e[0,∞) is a causal
operator with bounded gain. G is a linear time-invariant system:

ẋG = AxG +Bu, y = CxG +Du (2)

where xG ∈ RnG is the state of G.
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Figure 1: Feedback interconnection

Definition 1 The interconnection of G and ∆ is well-posed if for each r ∈ Lm2e[0,∞) and f ∈ Ln2e[0,∞)
there exist unique u ∈ Lm2e[0,∞) and v ∈ Ln2e[0,∞) such that the mapping from (r, f) to (u, v) is causal.

Definition 2 The interconnection of G and ∆ is stable if it is well-posed and if the mapping from (r, f)
to (u, v) has finite L2 gain for all solutions starting from xG(0) = 0.

2.2 Frequency Domain IQC Stability Condition

Let Π : jR → C(n+m)×(n+m) be a measurable Hermitian-valued function. Two signals v ∈ Ln2 [0,∞) and
w ∈ Lm2 [0,∞) satisfy the IQC defined by the multiplier Π if∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≥ 0 (3)

where v̂(jω) and ŵ(jω) are Fourier transforms of v and w. A bounded, causal operator ∆ : Ln2e[0,∞) →
Lm2e[0,∞) satisfies the IQC defined by Π if Equation 3 holds for all v ∈ Ln2 [0,∞) and w = ∆(v). The next
theorem provides a stability condition for the interconnection of G and ∆.

Theorem 1 ( [11]) Let G ∈ RHn×m
∞ and ∆ : Ln2e → Lm2e be a bounded causal operator. Assume for all

τ ∈ [0, 1]:

1. the interconnection of G and τ∆ is well-posed.

2. τ∆ satisfies the IQC defined by Π.



3. ∃ε > 0 such that [
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI ∀ω ∈ R. (4)

Then the feedback interconnection of G and ∆ is stable.

For rational multipliers, Condition 3 is equivalent to an LMI. Specifically, any Π ∈ RL(n+m)×(n+m)
∞

can be factorized as Π = Ψ∼MΨ where M = MT ∈ Rnz×nz and Ψ ∈ RHnz×(n+m)
∞ . Such factorizations

are not unique but can be computed with state-space methods [16]. Denote a state-space realization of
Ψ by (Aψ, [Bψ1, Bψ2], Cψ, [Dψ1, Dψ2]) where the Bψ/Dψ matrices are partitioned compatibly with [ vw ]. A
state-space realization for the system Ψ

[
G
I

]
is:

(Â, B̂, Ĉ, D̂) :=
([

A 0
Bψ1C Aψ

]
,
[

B
Bψ2+Bψ1D

]
,
[
Dψ1C Cψ

]
, Dψ2 +Dψ1D

)
(5)

Finally, the KYP Lemma [14,20] can be applied to demonstrate the equivalence of Condition 3 in Theorem 1
to an LMI condition. This result is stated formally below.

Theorem 2 ∃ε > 0 such that Equation 4 holds if and only if there exists a matrix P = P T such that[
ÂTP + PÂ PB̂

B̂TP 0

]
+

[
ĈT

D̂T

]
M
[
Ĉ D̂

]
< 0 (6)

2.3 Time Domain Dissipation Inequality Stability Condition

An alternative time-domain stability condition can be constructed using IQCs and dissipation theory. Let
(Ψ,M) be a factorization of Π. Let signals (v, w) satisfy the IQC in Equation 3 and define ẑ(jω) :=

Ψ(jω)
[
v̂(jω)
ŵ(jω)

]
. Then the IQC can be written as

∫∞
−∞ ẑ(jω)∗Mẑ(jω)dω ≥ 0. By Parseval’s theorem [27],

this frequency-domain inequality can be equivalently expressed in the time-domain as:∫ ∞
0

z(t)TMz(t) dt ≥ 0 (7)

where z is the output of the LTI system Ψ:

ψ̇(t) = Aψψ(t) +Bψ1v(t) +Bψ2w(t), ψ(0) = 0 (8)

z(t) = Cψψ(t) +Dψ1v(t) +Dψ2w(t) (9)

Thus ∆ satisfies the IQC defined by Π = Ψ∼MΨ if and only if the filtered signal z = Ψ [ vw ] satisfies the
time domain constraint (Equation 7) for all v ∈ Ln2 [0,∞) and w = ∆(v).

The constraint in Equation 7 holds, in general, only over infinite time. The term hard IQC in [11] refers

to the more restrictive property:
∫ T

0 z(t)TMz(t) dt ≥ 0 holds ∀T ≥ 0. In contrast, IQCs for which the
time domain constraint need not hold for all finite times are called soft IQCs. This distinction is important
because the dissipation theorem below requires the use of hard IQCs. One issue is that the factorization
of Π is not unique. Thus the hard/soft property is not inherent to the multiplier Π but instead depends
on the factorization (Ψ,M). A more precise definition is now given.

Definition 3 Let Π ∈ RL(n+m)×(n+m)
∞ be factorized as Ψ∼MΨ where M = MT ∈ Rnz×nz and Ψ ∈

RHnz×(n+m)
∞ . Then (Ψ,M) is a hard IQC factorization of Π if for any bounded, causal operator ∆ satisfying

the IQC defined by Π the following inequality holds∫ T

0
z(t)TMz(t) dt ≥ 0 (10)

for all T ≥ 0, v ∈ Ln2e[0,∞), w = ∆(v), and z = Ψ [ vw ].



The stability of the feedback system can be analyzed using Figure 2. This feedback interconnection
including Ψ is described by w = ∆(v) and the following extended linear dynamics (omitting the dependence
of all signals on time t):

ẋ = Âx+ B̂w + B̂2 [ fr ] := F (x,w, f, r) (11)

[ vu ] = Ĉ1x+ D̂11w + D̂12 [ fr ] (12)

z = Ĉx+ D̂w + D̂22 [ fr ] (13)

where x := [xTG, ψ
T ]T ∈ RnG+nψ is the extended state. Â, B̂, Ĉ, and D̂ are defined in Equation 5. The

remaining state matrices are defined as:

B̂2 :=
[

0 B
Bψ1 Bψ1D

]
, Ĉ1 :=

[
C 0
0 0

]
(14)

D̂11 :=
[
D
I

]
, D̂12 :=

[
I D
0 I

]
, D̂22 := [Dψ1 Dψ1D ] (15)
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Figure 2: Analysis Interconnection Structure

The next theorem provides a stability condition using IQCs and a standard dissipation argument.

Theorem 3 Let G ∈ RHn×m
∞ and ∆ : Ln2e → Lm2e be a bounded causal operator. Assume that:

1. the interconnection of G and ∆ is well-posed.

2. ∆ satisfies the IQC defined by Π and (Ψ,M) is a hard factorization of Π.

3. there exists P ≥ 0 and a scalar γ > 0 such that V (x) := xTPx satisfies

zTMz +∇V · F (x,w, f, r) < γ [ rf ]
T

[ rf ]− 1

γ
[ uv ]T [ uv ] (16)

for all nontrivial (x,w, r, f) ∈ RnG+nψ ×Rm×Rm×Rn where u, v, z are defined by Equations 12 and
13.

Then the feedback interconnection of G and ∆ is stable.

Equation 16 is an algebraic inequality on the variables (x,w, f, r). This constraint, when evaluated
along solutions of the extended system, represents the differential form for a dissipation inequality satisfied
by the extended system. The next lemma shows that the dissipation inequality in Equation 16 is also
equivalent to the KYP LMI.

Lemma 1 There exists P ≥ 0 satisfying the dissipation inequality (Equation 16) for some γ > 0 if and
only if there exists P ≥ 0 satisfying the KYP LMI (Equation 6).



2.4 Main Result

The previous section summarizes two IQC stability theorems. Theorem 1 involves a frequency domain
condition with a multiplier Π. Theorem 3 involves a dissipation inequality with a multiplier (Ψ,M). The
multipliers are connected by a non-unique factorization Π = Ψ∼MΨ. Theorems 1 and 3 are clearly related
as the Condition 3 in each theorem is equivalent to the same KYP LMI. Two important properties are
required for the dissipation inequality approach:

1. (Ψ,M) must be a “hard” factorization to ensure the time-domain constraint holds over all finite
intervals.

2. The solution to the KYP LMI must satisfy P ≥ 0. This is not required for the frequency domain
test.

The main result is: For a class of multipliers, Π has a factorization (Ψ,M) that is both “hard” and such
that any feasible solution of the KYP LMI satisfies P ≥ 0.

2.4.1 Condition for Hard Factorization

Define the following cost functional J on v ∈ Ln2 [0,∞), w ∈ Lm2 [0,∞), and ψ0 ∈ Rnψ :

J(v, w, ψ0) :=

∫ ∞
0

z(t)TMz(t) dt (17)

subject to:

ψ̇(t) = Aψψ(t) +Bψ1v(t) +Bψ2w(t), ψ(0) = ψ0

z(t) = Cψψ(t) +Dψ1v(t) +Dψ2w(t)

Also define the upper value J̄ as

J̄(ψ0) := inf
v∈Ln2 [0,∞)

sup
w∈Lm2 [0,∞)

J(v, w, ψ0) (18)

Lemma 2 Let Π ∈ RL(n+m)×(n+m)
∞ be a multiplier and (Ψ,M) any factorization of Π with Ψ stable.

Assume ∆ : Ln2e[0,∞)→ Lm2e[0,∞) is a casual, bounded operator that satisfies the IQC defined by Π. Then
for all T ≥ 0, v ∈ Lm2e[0,∞) and w = ∆(v), the output of Ψ satisfies:∫ T

0
z(t)TMz(t) dt ≥ −J̄(ψT ) (19)

where ψT denotes the state of Ψ at time T when driven by inputs (v, w) with initial condition ψ(0) = 0.

2.4.2 Condition for Positive Semidefinite KYP Solution

Define the lower value J as

J(ψ0) := sup
w∈Lm2 [0,∞)

inf
v∈Ln2 [0,∞)

J(v, w, ψ0) (20)

Lemma 3 Let Π ∈ RL(n+m)×(n+m)
∞ be a multiplier and (Ψ,M) any factorization of Π with Ψ stable. Given

G ∈ RHn×m
∞ , assume the corresponding KYP LMI (Equation 6) is feasible with state matrices (Â, B̂, Ĉ, D̂)

defined in Equation 5. Let P = P T denote a solution to the KYP LMI. Then V (x0) := xT0 Px0 ≥ J(ψ0)
for all x0 := [ xTG,0, ψ

T
0 ]T ∈ RnG+nψ .



2.4.3 Dissipation Inequalities with J-Spectral Factorizations

By Lemma 2, (Ψ,M) is a hard factorization if J̄(ψ) ≤ 0 ∀ψ. By Lemma 3, all KYP LMI solutions satisfy
P ≥ 0 if J(ψ) ≥ 0 ∀ψ. Moreover, weak duality implies that the lower and upper values satisfy J(ψ) ≤ J̄(ψ).
Hence a factorization Π = Ψ∼MΨ that is both “hard” and ensures P ≥ 0 for all KYP LMI solutions must
have 0 ≤ J(ψ) ≤ J̄(ψ) ≤ 0. In other words, for such a factorization the lower and upper values must
satisfy J(ψ) = J̄(ψ) = 0. The following special factorization plays a key role in the main result below.

Definition 4 (Ψ,M) is called a Jn,m-spectral factor of Π = Π∼ ∈ RL(n+m)×(n+m)
∞ if Π = Ψ∼MΨ, M =[

In 0
0 −Im

]
, and Ψ,Ψ−1 ∈ RH(n+m)×(n+m)

∞ .

Reference 2 in the publications funded by this project (Section 7) provides sufficient conditions for the
existence of a J-spectral factorization. These conditions are used in the main result stated below.

Theorem 4 Let Π = Π∼ ∈ RL(n+m)×(n+m)
∞ and partition as

[
Π11 Π∼21
Π21 Π22

]
where Π11 ∈ RLn×n∞ and Π22 ∈

RLm×m∞ . If Π11(jω) > 0 and Π22(jω) < 0 ∀ω ∈ R ∪ {∞}, then

1. Π has a Jn,m-spectral factorization (Ψ,M).

2. The Jn,m-spectral factorization (Ψ,M) is a hard factorization of Π.

3. For G ∈ RHn×m
∞ , let (Â, B̂, Ĉ, D̂) denote the state-space realization of Ψ

[
G
I

]
in Equation 5. All

solutions P = P T to the KYP LMI (Equation 6) satisfy P ≥ 0.

Factorization conditions in [4, 5] connect classical passivity multipliers and their IQC counterparts.
Theorem 4 provides a connection between classical passivity multipliers and dissipation theory. Specifically,
letH be a classical passivity multiplier proving stability for the interconnection ofG and a finite-gain system
∆. It follows by a simple perturbation argument, e.g. as in [4], that stability can be demonstrated with the

(frequency-domain) IQC test using Π =
[
εI H∗

H −ε
‖∆‖2

I

]
. The conditions in Theorem 4 hold for this multiplier

and thus a J-spectral factorization of Π exists. Moreover, there is a dissipation inequality that proves
stability of the feedback interconnection. In other words, if stability can be demonstrated by a classical
passivity multiplier then it can also be demonstrated via a dissipation inequality.

3 Robustness Analysis for Linear Parameter Varying Systems

The main result in the previous section connects dissipation inequalities and integral quadratic constraints.
As mentioned previously, this enables new applications of IQCs to analyze the robustness of time-varying
and nonlinear systems. This section considers the robustness of uncertain linear parameter varying (LPV)
systems. Details on the results contained in this section can be found in Reference 3 of the publications
generated by this research (Section 7).

The uncertain system is described by the feedback interconnection of an LPV system G and an uncer-
tainty ∆. This feedback interconnection with ∆ wrapped around the top of G is denoted Fu(G,∆). The
LPV system G is a linear system whose state space matrices depend on a time-varying parameter vector
ρ : R+ → Rnρ as follows:

ẋG(t) = AG(ρ(t))xG(t) +BG(ρ(t))
[
w(t)
d(t)

]
[
v(t)
e(t)

]
= CG(ρ(t))xG(t) +DG(ρ(t))

[
w(t)
d(t)

] (21)

where xG ∈ RnG is the state, w ∈ Rnw and d ∈ Rnd are inputs, and v ∈ Rnv and e ∈ Rne are outputs. The
state matrices of G have dimensions compatible with these signals, e.g. AG(ρ) ∈ RnG×nG . In addition, the



state matrices are assumed to be continuous functions of ρ. The state matrices at time t depend on the
parameter vector at time t. Hence, LPV systems represent a special class of time-varying systems. The
explicit dependence on t is occasionally suppressed to shorten the notation. Moreover, it is important to
emphasize that the state matrices are allowed to have an arbitrary dependence on the parameters. This
is called a “gridded” LPV system and is more general than “LFT” LPV systems whose state matrices are
restricted to have a rational dependence on the parameters [1, 12,15].

The parameter ρ is assumed to be a continuously differentiable function of time and admissible tra-
jectories are restricted to a known compact set P ⊂ Rnρ . In addition, the parameter rates of variation
ρ̇ : R+ → Ṗ are assumed to lie within a hyperrectangle Ṗ := {q ∈ Rnρ | νi ≤ qi ≤ ν̄i, i = 1, . . . , nρ}. The
set of admissible trajectories is defined as

T :=
{
ρ : R+ → Rnρ : ρ ∈ C1, ρ(t) ∈ P and ρ̇(t) ∈ Ṗ ∀t ≥ 0

}
(22)

The parameter trajectory is said to be rate unbounded if Ṗ = Rnρ .
Throughout the section it is assumed that the uncertain system has a form of nominal stability. Specif-

ically, G is assumed to be parametrically-dependent stable as defined in [25].

Definition 5 G is parametrically-dependent stable if there is a continuously differentiable function P :
Rnρ → SnG×nG such that P (p) ≥ 0 and

AG(p)TP (p) + P (p)AG(p) +

nρ∑
i=1

∂P

∂pi
qi < 0 (23)

hold for all p ∈ P and all q ∈ Ṗ.

As discussed in [25], parametric-stability implies G has a strong form of robustness. In particular, the
state xG(t) of the autonomous response (w = 0, d = 0) decays exponentially to zero for any initial
condition xG(0) ∈ RnG and allowable trajectory ρ ∈ T (Lemma 3.2.2 of [25]). Moreover, the state xG(t)
of the forced response decays asympotically to zero for any initial condition xG(0) ∈ RnG , allowable
trajectory ρ ∈ T , and inputs w, d ∈ L2 (Lemma 3.3.2 of [24]). The parameter-dependent Lyapunov
function V (xG, ρ) := xTGP (ρ)xG plays a key role in the proof of these results. To shorten the notation, a
differential operator ∂P : P×Ṗ → Rnx is introduced as in [17]. ∂P is defined as ∂P (p, q) :=

∑nρ
i=1

∂P
∂ρi

(p) qi.
This simplifies the expression of Lyapunov-type inequalities similar to Equation 23.

The uncertainty ∆ : Lnv2e [0,∞) → Lnw2e [0,∞) is a bounded, causal operator. The notation ∆ is used
to denote the set of bounded, causal uncertainties ∆. The input/output behavior of the uncertain set is
bounded using quadratic constraints as described further in the next section. At this point it is sufficient
to state that ∆ can have block-structure as is standard in robust control modeling [27]. ∆ can include
blocks that are hard nonlinearities (e.g. saturations) and infinite dimensional operators (e.g. time delays)
in addition to true system uncertainties. The term uncertainty is used for simplicity when referring to the
perturbation ∆.

The objective of this section is to assess the robustness of the uncertain system Fu(G,∆). For a given
∆ ∈∆, the induced L2 gain from d to e is defined as:

‖Fu(G,∆)‖ := sup
06=d∈Lnd2 [0,∞)
ρ∈T , xG(0)=0

‖e‖2
‖d‖2

(24)

Two forms of robustness are considered. First, the worst-case induced L2 gain from input d to the output
e is defined as

sup
∆∈∆

‖Fu(Gρ,∆)‖. (25)



This is the worst-case gain over all uncertainties ∆ ∈ ∆ and admissible trajectories ρ ∈ T . Second,
the system has robust asymptotic stability if xG(t) → 0 for any initial condition xG(0) ∈ RnG , allowable
trajectory ρ ∈ T , disturbance d ∈ L2 and uncertainty ∆ ∈∆.

The main result (Theorem 5 below) provides a sufficient condition for when an uncertain LPV system
has both robust asymptotic stability and bounded worst-case gain. The results is based on the intercon-
nection of the nominal LPV system G and the filter Ψ of the IQC factorization, similar to Figure 2. The
dynamics of this interconnection are described by w = ∆(v) and

ẋ = A(ρ)x+B1(ρ)w +B2(ρ)d

z = C1(ρ)x+D11(ρ)w +D12(ρ)d

e = C2(ρ)x+D21(ρ)w +D22(ρ)d,

(26)

with x :=
[ xG
ψ

]
∈ RnG+nψ is the extended state. Removing the uncertainty ∆ from the analysis intercon-

nection, w can be viewed as an external signal subject to the constraint
∫ T

0 zT (t)Mz(t) dt ≥ 0.

Theorem 5 Let G be a parametrically stable LPV system defined by eq. (21) and ∆ : Lnv2e [0,∞) →
Lnw2e [0,∞) be a bounded, causal operator such that Fu(G,∆) is well-posed. Assume ∆ satisfies the IQC
parameterized by Π(λ) = Ψ∼M(λ)Ψ with Ψ stable. If

1. The combined multiplier, partitioned as Π(λ) =
[

Π11 Π12
Π∼12 Π22

]
, satisfies Π11(jω) > 0 and Π22(jω) < 0

∀ω ∈ R ∪ {∞} where Π11 is nv × nv and Π22 is nw × nw.

2. There exists a continuously differentiable P : P → Snx×nx, and a scalar γ > 0 such that[
ATP+PA+∂P PB1 PB2

BT1 P 0 0

BT2 P 0 −γ2I

]
+

[
CT2
DT21

DT22

][
CT2
DT21

DT22

]T
+

[
CT1
DT11

DT12

]
M(λ)

[
CT1
DT11

DT12

]T
< 0 (27)

hold for all p ∈ P and all q ∈ Ṗ.

Then

a) For any x(0) ∈ RnG+nψ and d ∈ L2, limT→∞ x(T ) = 0

b) ‖Fu(G,∆)‖ ≤ γ

The implementation of Theorem 5 involves some numerical issues. These are briefly described here.
If the IQC is parameterized such that M(λ) is an affine function of λ then theorem 5 involves parameter
dependent LMI conditions in the variables P (ρ) and λ. λ needs to satisfy condition 1 in theorem 5, i.e.
Π11 > 0 and Π22 < 0. These are infinite dimensional (one LMI for each (p, q) ∈ P × Ṗ) and they are
typically approximated with finite-dimensional LMIs evaluated on a grid of parameter values. Additionally,
the main decision variable is the function P (ρ) which must be restricted to a finite dimensional subspace.
A common practice [2, 26] is to restrict P (ρ) to be a linear combination of user-specified basis functions.
The analysis can then be performed as a finite-dimensional SDP [3], e.g. minimizing γ subject to the
approximate finite-dimensional LMI conditions. This paper focused on gridded LPV systems whose state
matrices have an arbitrary dependence on the parameter. If the LPV system has a rational dependence on
ρ then finite dimensional LMI conditions can be derived (with no gridding) using the techniques in [1,12].



4 Nonlinear Robustness Analysis

The main result in Section 2 connects dissipation inequalities and integral quadratic constraints. As
mentioned previously, this enables new applications of IQCs to analyze the robustness of time-varying and
nonlinear systems. This section considers the analysis of nonlinear systems. Details on the results contained
in this section can be found in Reference 1 of the publications generated by this research (Section 7).

Consider a nonlinear system governed by differential equations of the follwoing form

ẋ(t) = f(x(t)) + g(x(t))w(t),

z(t) = h(x(t)),
(28)

where t ∈ R, x(0) = x0 ∈ Rn, x(t) ∈ Rn, z(t) ∈ Rp, w(t) ∈ Rm. The functions f : Rn → Rn, g : Rn → Rn×m
and h : Rn → Rp are assumed to be Lipschitz continuous, or locally Lipschitz continuous, depending on
the situation. If f and g are not Lipschitz continuous (as in the case of polynomial f and g, for example),
then the differential equation may exhibit finite escape times in the presence of bounded inputs and/or
initial conditions.

The goal of this research is quantitative, local analysis of nonlinear dynamical systems. By “quantita-
tive” we mean algorithms and sufficient conditions which lead to concrete guarantees about a particular
system’s response. By “local” we refer to guarantees about the reachability and/or system gain which are
predicated on assumptions concerning the magnitude of initial conditions and input signals. We extensively
use the basic, fundamental ideas from dissipative systems theory [22], [7], barrier functions and reachabil-
ity [19], [13], and nonlinear optimal control [18], [6]. Specifically, we employ inequalities involving the Lie
derivative of a scalar function, the storage function, that hold throughout regions of the state and input
space, which when integrated over trajectories of the system, give certificates of input/output properties
of the system. The necessity of the existence of such storage functions to prove input/output properties,
which leads to the most elegant results of the above mentioned works, is actually not used in this paper.
Our computational approach is based on polynomial storage functions of fixed degree which can be viewed
as extensions of known linear matrix inequality conditions to compute reachable sets and input/output
gains for linear systems [3].

The contributions are as follows: a dissipation inequality formulation of local reachability and dissi-
pativeness for uncertain systems that are not nominally globally stable are derived; refinements on the
reachability and L2 gain conditions that can be used to efficiently compute improved quantitative perfor-
mance bounds; sum-of-squares (SOS) characterizations of the required set containment conditions in the
dissipation inequalities; proof of guaranteed feasability of the SOS conditions for systems with stable lin-
earizations; development of a scheme to find feasible solutions to the bilinear SOS conditions, and improve
the objective through a specific iteration scheme; and a collection of illustrative and realistic examples
illustrating the methods.

One result on reachability is provided to demonstrate the basic approach. Details on the remaining
results can be found in Reference 1 of the publications generated by this research (Section 7). Specifically,
we establish conditions which guarantee invariance of certain sets under L2 and pointwise-in-time (L∞-
like) constraints on w. These are subsequently referred to as “reachability” results, since the conclusions
yield outer bounds on the set of reachable states. In that vein, w is interpreted as a disturbance, whose
worst-case effect on the state x is being quantified. We obtain bounds on x that are tightly linked with
the assumed bounds on w and x0, and specifically allow for systems which are not well-defined on all input
signals (finite escape times).

A known set W ⊆ Rm is used to express any L∞-like, pointwise-in-time bound on the signal w, namely
w(t) ∈ W for all t. Setting W = Rm is equivalent to the absence of known, pointwise-in-time bounds on
w.



Theorem 6 Suppose W ⊆ Rm. Assume that f and g in (28) are Lipschitz continuous on Rn. Suppose
τ > 0, and a differentiable Q : Rn → R satisfies Q(0) < τ2 and

Ωcc,0
Q,τ2 ×W ⊆

{
(x,w) ∈ Rn × Rm : ∇Q(x) · [f(x) + g(x)w] ≤ wTw

}
. (29)

Consider x0 ∈ Ωcc,0
Q,τ2 with Q(x0) < τ2 and w ∈ Lm2 with w(t) ∈ W for all t. If ‖w‖22 < τ2 − Q(x0), the

solution to (28) with x(0) = x0 satisfies Q(x(t)) < τ2 for all t, and hence x(t) ∈ Ωcc,0
Q,τ2 for all t.

Without loss of generality, Q in Theorem 6 can be taken to be zero at x = 0. For instance, define
Q̃(x) := Q(x)−Q(0) and τ̃2 := τ2−Q(0). The conditions of Theorem 6 hold with Q̃ replacing Q, and the
same norm bound (i.e. reachable set) is obtained. Computational approaches based on the S-procedure
and sum-of-squares are described further in the paper.

5 IQC Analysis for Certifying Exponential Convergence

The standard stability result for interconnections involving nonlinearities described by IQCs [9–11] provides
a frequency-domain test for certifying BIBO stability of the associated interconnected system. Since the
frequency-domain test is difficult to verify computationally, a standard approach is to use the Kalman-
Yakubovich-Popov (KYP) lemma to obtain an equivalent linear matrix inequality (LMI) that can then be
checked using a conventional convex programming software package.

The approach outlined above is useful in verifying the robust stability of an interconnected system
containing components that are nonlinear, uncertain, poorly modeled, or otherwise problematic. With
minor modifications, the same result can be adapted for use in certifying L2 gain bounds or passivity.
Unfortunately, the approach cannot prove exponential stability. To contrast both notions of stability, we
have (in discrete time):

L2 stability implies:
∞∑
k=0

‖xk‖2 < γ2 for some γ, while

exponential stability implies: ‖xk‖ < cλk for some c > 0 and λ ∈ (0, 1)

Note that in the L2 case, the norm is invariant under rearrangement. Thus, two signals with the same γ
both eventually go to zero, but their transient behaviors may be completely different. In the exponential
case, however, two signals with the same (c, λ) have the same decaying exponential envelope. Therefore,
exponential stability is much stronger than its L2 counterpart, and it is useful to be able to certify it.

The standard IQC result can only certify L2 stability. The authors of [Megretski and Rantzer ’97]
address this shortcoming by pointing out that BIBO stability often implies exponential stability in many
cases of practical interest. So by certifying an L2 gain bound, we often get exponential stability for free.
However, in such cases, one can only prove the existence of some (c, λ). One could not, for example,
optimize to find the certificate with the fastest possible exponential rate (i.e. minimizing λ).

Under the support of AFOSR, we developed an IQC-based method for certifying exponential conver-
gence that also allows one to optimize over λ. We also provide nontrivial instances for which our exponential
rate bounds are tight.

To illustrate our approach, it is useful to first consider a simple case. Consider a discrete linear time-
invariant (LTI) plant G with state-space realization (A,B,C,D). Suppose G is connected in feedback with
a passive nonlinearity ∆. A sufficient condition for BIBO stability is that there exists a positive definite
matrix P � 0 and a scalar λ ≥ 0 satisfying the linear matrix inequality (LMI)[

A B
I 0

]T [
P 0
0 −P

] [
A B
I 0

]
+ λ

[
0 CT

C D+DT

]
≺ 0 (30)



If we define V (x) := xTPx, then (30) implies that V decreases along trajectories: V (xk+1) ≤ V (xk) for
all k. BIBO stability then follows from positivity and boundedness of V . But observe that when (30)
holds, we may replace the right-hand side by −εP for some ε > 0 sufficiently small. We then conclude
that V (xk+1) ≤ (1− ε)V (xk) for all k and exponential stability follows. We can then maximize ε subject
to feasibility of (30) to further improve the rate bound. A simple way of carrying out this maximization
is to perform a bisection search on ε, since (30) is a convex program for every fixed ε.

The simple trick shown above works because passivity is a very special case of an IQC for which there
are no dynamics involved. In other words, passivity can be verified in a pointwise fashion by checking that
uTk yk ≥ 0 for all k. Unfortunately, the trick shown above does not work in the general dynamic IQC setting
due to the different role played by P in the associated LMI. The LMI used in IQC theory comes from the
KYP lemma and although it is structurally similar to (30), P is not positive definite in general and V may
not decrease along trajectories.

Our key insight is that with a suitable modification to both the LMI and the IQC definition, we obtain
a condition that can certify exponential stability for a given rate λ. The resulting optimization problem is
convex for any λ, so we can optimize over λ by performing a bisection search. We show that our modified
IQC approach finds tight exponential bounds for a simple yet nontrivial example: a third-order plant in
feedback with a saturating nonlinearity. Additional details on the results contained in this section can be
found in Reference 4 of the publications generated by this research (Section 7).

6 Analyzing Optimization Algorithms

Electromechanical systems often contain embedded optimization algorithms. One example is modern
applications of model-predictive control. Other examples include machine learning and computer vision,
where large quantities of data must be processed in real-time on a small platform such as a robot or UAV.
In all such cases, the optimization algorithms are sequential in nature, and are carried out either for a fixed
number of steps, or until a desired error tolerance is reached.

Sequential algorithms can be interpreted as uncertain dynamical systems, where the uncertainty is due
to the function being optimized, and the dynamics are due to the choice of sequential algorithm. As a simple
example, consider the heavy ball method applied to some unknown differentiable function f : Rn → R.

xk+1 = xk − α∇f(xk) + β(xk − xk−1) (31)

Here, α and β are the stepsize and momentum parameters, respectively. By including additional definitions
for pk, uk, yk, we may rewrite (31) as follows:[

xk+1

pk+1

]
=

[
1 + β −β

1 0

] [
xk
pk

]
+

[
−α
0

]
uk (32a)

yk =
[
I 0

] [xk
pk

]
(32b)

uk = ∇f(yk) (32c)

If we let G be the linear time-invariant system G : u 7→ y described by (32a)–(32b) and we let ∇f be the
static map y 7→ u described by (32c), then we can represent (31) as the block diagram of Figure 3.

It turns out that many different kinds of iterative algorithms may be abstracted in the form of Figure 3.
These include gradient-based schemes such as gradient descent and its accelerated variants such as the
heavy ball method and the fast gradient method (also known as Nesterov’s accelerated method). More
complicated examples include projected variants for use in constrained optimization, proximal algorithms,
and operator-splitting methods such as the alternating direction method of multipliers (ADMM).

A common way of evaluating the performance of an iterative optimization algorithm is to bound its
worst-case convergence rate. When viewed as a dynamical system, this amounts to proving exponential



G

∇f

u y

Figure 3: Block diagram representing the uncertain dynamics of the heavy ball method (31). G represents
the LTI dynamics of the iterative algorithm while ∇f is the gradient of the function being optimized.

stability and computing the smallest associated decay rate λ ∈ (0, 1). Therefore, the method described in
Section 5 is perfectly suited for this analysis.

When we carry out the analysis, we recover the best possible rates for a multitude of algorithms as
found in the existing literature on optimization algorithms. Moreover, the same proof works for all the
algorithms. In a further study, we used the same IQC-based approach to analyze the ADMM algorithm
specifically. We found provably tight bounds on its performance as well as a principled approach to
hyperparameter selection. The benefits of our analysis are the inherent simplicity of the approach and the
fact that the associated LMIs are very small and can be solved in milliseconds using generic solvers on
cheap hardware. Additional details on the results contained in this section can be found in References 5
and 6 of the publications generated by this research (Section 7).
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