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SYNOPSIS: Cutting edge research of the region between the solar photosphere and Alfvén
surface, where the solar wind disconnects from the solar surface, increasingly relies on large-
scale computational modeling. This is true not just for numerical experiments that only
involve simulations, but also for interpreting the ever-more-intricate observations coming
out of new facilities. A paradigm shift is currently underway in the field, away from ad hoc
and ab initio models of the atmosphere and towards simulations that are directly driven by
observations. While this topic is currently at the level of basic research into the techniques,
the intent is for it to serve both basic research and operational space-weather needs. We
must advance data driven simulations and their supporting infrastructure to the point where
community members can use time dependent dynamic models on a regular basis as a tool to
interpret observations and test physical theories.
Because of the complexity of the task, the immense computational resources required,
and the required longevity of such a project, we argue that this effort should be strategi-
cally funded. Such an effort is required to make the most out of current and upcoming
multi-mission, multi-instrument, heterogeneous observational data.

• Dedicated funding is required for collaborative model development that allows for
continuous community use, support, and contribution, separate from the application
of models to specific scientific analyses and papers

• Data and computational resources should be hosted within the same facility to provide
tightly integrated dynamic modeling, forward modeling, and data analysis. This facil-
ity needs to combine easy access to simulation and observational data and easy access
to open-source codes that can be run as-is or modified as-needed

• The broad scope of data driven methods require the combination of 4π steradian spec-
tropolarimetric observations for self-consistent global models and high temporal/spa-
tial resolution, multi-height observations for detailed studies of local physical pro-
cesses
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SSPH 2024-2033: Data-Driven and -Assimilating Simulations

Figure 1: Cartoon overview of the data-driving and assimilative modeling framework. The lower level represents the
continuous boundary driving data upon which both global (center,left) and detailed local (right) simulations are based.
Additional images show recent examples of forward modeling through such simulations. Closing the feedback loops
between modeling and observations is required both to interpret the latest observations via inversions and realize true,
in-the-volume data assimilation. Data and modeling adapted from [1, 2, 3]; solar eclipse image in upper left © 2017
Miloslav Druckmüller, Peter Aniol, Shadia Habbal.

1. State of the art

Multi-wavelength observations in the solar photosphere, chromosphere and lower solar corona
provide the inner dynamic boundary condition for the heliosphere. Understanding the 3D dynamic
state of the magnetic field and plasma parameters requires models that combine individual observa-
tions (typically constraining only a small fraction of the volume in a thin radial layer) with models
that provide a volume filling global context. The main open questions in the physics of the solar
atmosphere — how the atmosphere above the temperature minimum region is heated, how and
where the various types of solar wind arise, and what mechanisms trigger individual eruptions as
flares and coronal mass ejections (CMEs) — all require knowledge of the 3D structure of the mag-
netic field and plasma properties above the photosphere. At present, that knowledge is severely
limited. As just one demonstration, the current status of solar eruption forecasting makes clear
that there is a massive overlap in the parameter spaces of eruptive and non-eruptive active regions
[4, 5]; this implies that we fundamentally do not know what the 3D magnetic or thermodynamic
structure of the corona is and therefore have limited ability to assess its stability.

There are primarily two groups of models that simulate evolving coronal magnetic fields in
3D: quasi-static (or time-independent) and dynamic (time-dependent). In the quasi-static group,
the potential, linear, and non-linear force-free field (NLFFF) extrapolations have been developed.
These models apply the vacuum-limit assumption, which assumes that magnetic pressure domi-
nates the gas pressure (low-β regime). Another group of models, that use fewer approximations,
are time-dependent models. The time-dependent models come in a variety of setups. Smaller-
domain but high-resolution fluid models, such as Bifrost [6, 7] and MURaM [8, 9, 10], have the
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most comprehensive physics and allow for forward modeling of observables from visible to EUV
and soft X-ray wavelengths, but are computationally expensive. Large-scale models, including
global fluid models [1], have lower resolution and simplified physics, but allow for the modeling
of the evolution of individual eruptions originating within the global solar corona out to large ra-
dial distances from the Sun [11]. The ingestion of observations in all models is critical for the
modeling of actual solar events. The research focus is currently moving rapidly from the domain
of data-inspired models (where the initial setup mimics certain properties observed on the Sun) to
data-driven models that rely on routine vector magnetic field observations from HMI/SDO and use
new techniques to derive electric fields or plasma velocities. How to incorporate the increasing
number of multi-height observations is at this point an open research topic. The future requires
a focused community plan to make the most of the deluge of heterogeneous data coming from a
number of sources, notably the NSF’s new flagship ground-based visible and infrared Inouye Solar
Telescope [12], the corona-specific CoMP [13] and COSMO [14] facilities, and radio observations
from, e.g., ALMA [15] and EOVSA [16] (see also the FASR white paper [17]).

Currently, magnetohydrodynamic (MHD) models of the coupled photosphere-corona atmo-
sphere, such as those that study CME/flare events, typically derive boundary conditions for the
magnetic field from the observed photospheric magnetograms and produce the pre-eruptive con-
figuration using (1) some form of boundary driving of magnetic flux, such as flux emergence, shear
flows, and helicity condensation [18, 19, 20, 21], (2) nonlinear force-free field (NLFFF) extrapola-
tions [22], or (3) analytical flux-rope models that are inserted into the source region of the eruption
[11]. In many cases, the lower boundary driving and/or the construction of the force-free field and
the inserted flux ropes are still largely ad hoc and not well constrained by either the observations
or the physics of the driving layer. As a result, generally only qualitative agreement is obtained
between the modeled magnetic field evolution and the observed event. Truly quantitative models
of flare and CME events that are well constrained by observations are yet to be developed.

Figure 2: Left: Synthetic emission proxy from a data-driven radiative zero-
beta MHD simulation of active region (AR) 11158 derived with the Coronal
Global Evolutionary Model (CGEM). The run used electric fields inverted
from HMI observations as a photospheric driver. Right: Observed emission
of AR 11158 in AIA 131A high-temperature channel before the X2.2 flare.
Adapted from [23].

Another challenge is bridg-
ing the gap between physically
required and numerically fea-
sible resolution and cadence.
Lately, two types of data-driven
models have been developed for
this purpose: magneto-friction
(MF) [18] and MHD models
[24]. The MF model assumes
that the plasma velocity in the
induction equation is propor-
tional to the local Lorentz force;
the subsequent plasma evolu-
tion leads to a relaxation of a
magnetic configuration toward a
force-free state. MF is more computationally efficient than MHD and is suitable for description
of the slow quiescent evolution of active regions (ARs), but not for modeling of the eruptions.
The MHD models explicitly solve a full set of MHD equations including the plasma properties.
The MHD approach is suitable for modeling the rapid evolution of ARs during eruptions but is
currently too computationally expensive to model their long-term quiescent evolution. A hybrid
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framework, where the MF model is used to model quiescent periods of AR evolution and the MHD
model is used to model flaring periods of AR evolution, has been recently developed within the
Coronal Global Evolutionary model (CGEM [23], see Figure 1). Other global approaches use lo-
cally concentrated or adaptively refined grids (e.g. the SWMF [25]). The future lies in data-driven
models that can be implemented through: (1) boundary driving, the use of temporal sequences
of photospheric electric fields (derived from vector magnetograms to represent the realistic flux
transport) at the lower boundary for a time-dependent coronal field model (e.g. [26]); and (2) data
assimilation, the use of temporal sequences of observations for updating the physical state of a
model through statistical methods such as Ensemble-Kalman filters (EnKF).

Data Assimilation (DA) is widely used and well established in the Earth atmospheric com-
munity (e.g. to forecast the weather); however, the use in solar physics is currently limited to
applications of solar-cycle forecasting [27, 28]. The full implementation of DA (through EnKF)
in MHD models is a step beyond boundary driving which provides the following advantages: (1)
evolution of an ensemble model that can account for observation uncertainties and calculate model
errors; (2) correction of the full model state in response to new observations; (3) the ability to
assimilate a wide variety of observations, including remote sensing and in-situ observations, not
limited to just the lower boundary of the system. However, EnKF DA entails substantial computing
costs due to requiring (1) adequate ensemble runs and (2) forward modeling of observables from
physical model-outputs to compare the model with real observations at every assimilation-step.

2. Current roadblocks and how to clear them

In the next decade we must support the development of time-dependent data-driven simulations
using physically consistent boundary conditions and in-the-volume assimilation that treat both the
magnetic and plasma variables. Data-driven MHD following a general radiative fluid or multi-fluid
approach is necessary because: (i) Static extrapolations lack sufficient physics and constraints
to be correct in the sense that an inferred coronal state cannot confidently be stated to be near the
true state. Such extrapolations cannot distinguish between, for instance, proposed theories for so-
lar eruptions. Further, time series of extrapolations are not causally connected and therefore allow
changes in the 3D state from one time to the next that are disallowed by any physical process. (ii)
Magneto-frictional methods also lack correct physics, i.e. they omit the material plasma and in-
clude non-physical evolution, even though they do provide a major improvement on static models
via built-in hysteresis. (iii) Spectropolarimetric data require sophisticated inversions to infer
the 3D magnetic and plasma structure in both the lower atmosphere [29] and the corona [30].
Currently, inversions almost exclusively assume independent 1D radiative transfer problems with-
out reference to or knowledge of dynamically consistent 3D models. While recent efforts try to
include spatial coupling [31] or infer plasma parameters on a spatial rather than optical depth grid
[32, 33], in practice, performing an inversion will always be a highly model-dependent problem
from two different perspectives: first, it depends upon physical models that allow inversion of the
combined diagnostics from broadband emission and polarized spectra to recover the physical char-
acteristics of the emitting plasma; and second, computational extrapolation models must be used
to fill in gaps in the observational data: spatially, temporally, and in terms of sensitivity to each
plasma property (magnetic field, density, temperature, ionization degree, etc.). Data-driven simu-
lations, which are dynamically constrained by the underlying equations of motion, are a powerful
tool to drastically reduce the uncertainties in both types of model dependencies. (iv) Currently,
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the inner boundary conditions and initial state of both global forecasting models and smaller-
scale detailed modeling of individual events are mostly ad hoc. For example, CMEs inserted
into a background solar wind to simulate space weather events are either initially unstable or are
ad hoc driven until they erupt [11]. Instead, data-driving provides a scaffolding on which to hang
multi-scale studies which must accurately capture and exchange the effects of physical processes
occurring at each of the scales in the multi-scale simulation suite, e.g., providing the first layer of
the linked series of models in the white paper by Allred et al. [34]. Physically consistent bound-
ary conditions capture physics at larger scales outside each subset of the simulation suite, and
data assimilation captures physics at sub-grid scales. Having dynamical, data constrained models
will provide realistic inner boundary conditions for the heliosphere and initial conditions for more
detailed local models.

To move beyond the limitations just described, time dependent data-driven models are required,
but only possible given the confluence of 3 critical elements:

• The availability of data (both remote sensing and in-situ) with a stable quality, time-duration,
spatial coverage, and cadence, that constrain enough of the MHD state vector;

• MHD models with a sufficient sophistication in terms of physics and their ability to simulate
a solar-like setup in terms of domain extent and time-scales;

• The ability to ingest these data into models and to continuously update and correct the model
state to reflect the observed conditions on the Sun.

3. Critical elements

3.1. Data Requirements, Observing Facility requirements

We need to have data that are capable of both feeding simulations and assessing their performance.
The recent progress in data-driven models has relied critically on routine vector magnetic field ob-
servations from the HMI/SDO and new approaches to derive electric fields (or plasma velocities)
from these observations. The need for such observations will only increase once full data assimi-
lation approaches are incorporated into MHD models, and new methods must also include better
constraints on the thermodynamic variables; uncertainties, in particular systematics in current and
future observations, will need to be better quantified. Future routine observations of vector mag-
netic fields in the chromosphere and transition region (e.g., ngGONG [35]) can provide the much
needed additional constraints within the volume, particularly of the pre-eruption chromospheric
and coronal magnetic field [36]. Global operational models require continuous observations of the
vector magnetic field and at least one thermodynamic variable over the whole 4π surface of the
Sun. Future space missions need to focus on multi-spacecraft constellations mapping out a larger
area of the heliosphere [37].

3.2. Model requirements

• Improving models such that large-scale simulations of the solar atmosphere allow for a de-
tailed modeling of processes and the forward modeling of observables through a combination
of implemented physics and numerical resolution. Forward modeling of spectropolarimetric
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observables is often done as a post processing step that is poorly integrated with MHD mod-
els and is a large bottleneck for individual researchers. This bottleneck includes both easy
access to extensive MHD datasets for a broad swath of the community as well as the compu-
tational resources required for the most expensive and diagnostic-rich forward models. The
FORWARD [38] project was an early example of building the forward modeling side of this
endeavor, but isn’t directly coupled with a broad variety of simulations.

• The full implementation of data assimilation to ingest a wide range of remote sensing and
in-situ observations from heliospheric observatories. Unlike boundary driven models, data
assimilation can ingest a multitude of simultaneous observations within the entire simulation
volume and account for observation uncertainties and calculate model errors. While data
assimilation is widely used in models of Earth’s atmosphere, it has rarely been explored and
applied in the context of the solar atmosphere.

• The use of accelerator technologies such as GPUs and physics parameterization utilizing ma-
chine learning to boost computation speed. This will allow models to run faster than real time
in order to enable research on a large number of observed events and allow for operational
space weather modeling. These developments are only possible if the field widely adopts the
latest computing technologies (such as the use of accelerators in form of GPUs) and stays
on the forefront of new developments. While some models have been refactored for GPU
use (e.g. MAS, [39]) or are in the process of refactoring (e.g. MURaM, [40]), the field of
solar physics overall is already 1 decade behind the curve in adopting GPU computing and
other emerging exa-scale technologies. We need targeted support for this transition in a way
that allows continued in-community development of new codes through a culture change in
training software engineers and domain scientists in the use of exa-scale technology.

3.3. The need for community coordination

Building a simulation framework like we propose is too great an effort for a single-PI, university-
scale research program. There is broad interest in these tasks within the community, as evi-
denced by a number of recent workshops and conference sessions : “Model-Coupling workshop”
(Boulder 2018); “Data-Driven Models of the Solar Progenitors of Space Weather and Space Cli-
mate” (Nagoya 2018); “Data-driven 3D Modeling of Evolving and Eruptive Solar Active Region
Coronae” (ISSI 2022); and numerous sessions at the TESS, SPD, AGU, and COSPAR meetings.
However, progress is currently somewhat piecemeal. What is lacking is a concerted, community-
informed effort to decide the best way to implement the tight integration of data driven modeling
with observational data analysis. We therefore argue that this capability should be coordinated
and supported at the national level.

• Solar observations are incredibly sophisticated. Modern analyses increasingly rely on multi-
mission, multi-instrument, heterogeneous datasets that combine imaging, spectroscopy, po-
larimetry, and interferometry between radio and x-ray wavelengths [41, 42]. The type of
modeling framework we propose is necessary to interpret the latest observations coming
out of recent and upcoming solar-capable facilities (DKIST, COSMO, UCoMP, ALMA,
EOVSA, SST, GREGOR, PSP, SO, MUSE, EUVST, . . . ).
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• The primary development of many commonly used codes in solar physics is based in Europe
(e.g. MHD codes such as BiFROST [6, 7, 43], MURAM [8, 9, 40, 44], MPI-AMRVAC [45],
MANCHA3D [46], CO5BOLD [47], and inversion codes such as STiC [48], NICOLE [49],
HAZEL [50], DeSIRe [51]). Therefore the European community is in a better position to
fully take advantage of the latest observations, especially the copious amount of spectropo-
larimetric data just starting to come on line from DKIST [12]. If the US wants to stay at
the forefront of solar research in the coming decade, studying coupled dynamics of the solar
atmosphere, including the chromosphere, is crucial. This requires sophisticated multi-fluid,
multi-species codes with non-equilibrium ionization coupled to global scales. In order to
stay competitive the US must support the development of data driven codes, not just their
use in specific analyses.

• The massive amounts of observational and simulation data, each of which require large com-
putational resources to produce and analyze, need to be stored at the same location. As an
example, during a recent campaign, several hours of observations from the DKIST gener-
ated roughly 20Tb of data. Handling this amount of data efficiently, and cross-comparing to
a similar amount of simulation data, is an extraordinarily challenging problem beyond what
can or should be required of individual researchers: models need to be tied to the evolving
requirements of facilities that are supported at the national level.

• The “joined at the hip funding” of computational modeling and observations was a massive
success for the IRIS/BiFROST spacecraft and simulation effort. Later, forward modeling
through numerous numerical models (BIFROST, MURaM, RADYN [52, 53]), was explicitly
used in the design phase of the recently selected MUSE mission [54, 55]. Radiation MHD
simulations were used in the design phase of DKIST instrumentation to simulate instrument
performance. Similar capabilities should be specifically supported for new facilities in order
to fully realize their individual and collective potential.

4. Final Statement

The developments listed in §3.3 are critical to enable a comprehensive investigation of phys-
ical processes in the coupled solar atmosphere. They are required to make the most of com-
bined observations from multiple observatories and instruments in a consistent dynamical
context given by data-driven MHD models. Self-consistently driven models will answer
fundamental questions about the solar atmosphere: what is its 3D structure, how did that
structure arise, and is it stable? What does its evolution tell us about the Sun’s internal dy-
namo and how it couples outward to the solar wind? Ultimately, these models will allow
the science-to-operations transition and enable us to make the jump from flare and CME
forecasting based on empirical relations to those derived directly from ensemble modeling
around a dynamically constrained initial condition, thus giving the physical basis for eruption
probability and timing, estimation of CME strength, speed, and magnetic field orientation—
the vital elements of space weather prediction that will allow humanity’s continued explo-
ration of the heliosphere.
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